
Signalling Data Terminal Interface (SDTI) Specification

Signalling Data Terminal Interface (SDTI)

Specification
Version 0.9a Edition 8

Updated 2008-10-31
Distributed with Package strss7-0.9a.8

Copyright c© 2008 OpenSS7 Corporation
All Rights Reserved.

Abstract

This document is a Specification containing technical details concerning the im-
plementation of the Signalling Data Terminal Interface (SDTI) for OpenSS7. It
contains recommendations on software architecture as well as platform and sys-
tem applicability of the Signalling Data Terminal Interface (SDTI). It provides
abstraction of the signalling data terminal interface to these components as well
as providing a basis for signalling data terminal control for other signalling data
terminal protocols.

Brian Bidulock <bidulock@openss7.org> for

The OpenSS7 Project <http://www.openss7.org/>

mailto:bidulock@openss7.org
http://www.openss7.org/

Copyright c© 2001-2008 OpenSS7 Corporation
Copyright c© 1997-2000 Brian F. G. Bidulock
All Rights Reserved.

Published by:

OpenSS7 Corporation
1469 Jefferys Crescent
Edmonton, Alberta T6L 6T1
Canada

Unauthorized distribution or duplication is prohibited.

Permission to use, copy and distribute this documentation without modification, for any
purpose and without fee or royalty is hereby granted, provided that both the above copy-
right notice and this permission notice appears in all copies and that the name of OpenSS7
Corporation not be used in advertising or publicity pertaining to distribution of this docu-
mentation or its contents without specific, written prior permission. OpenSS7 Corporation
makes no representation about the suitability of this documentation for any purpose. It is
provided “as is” without express or implied warranty.

Notice:

OpenSS7 Corporation disclaims all warranties with regard to this documentation including
all implied warranties of merchantability, fitness for a particular purpose, non-infringement,
or title; that the contents of the document are suitable for any purpose, or that the im-
plementation of such contents will not infringe on any third party patents, copyrights,
trademarks or other rights.. In no event shall OpenSS7 Corporation be liable for any di-
rect, indirect, special or consequential damages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with any use of this document or the performance
or implementation of the contents thereof.

OpenSS7 Corporation reserves the right to revise this software and documentation for any
reason, including but not limited to, conformity with standards promulgated by various
agencies, utilization of advances in the state of the technical arts, or the reflection of changes
in the design of any techniques, or procedures embodied, described, or referred to herein.
OpenSS7 Corporation is under no obligation to provide any feature listed herein.

http://www.openss7.com/
mailto:bidulock@openss7.org
http://www.openss7.com/

i

Short Contents

Preface . 3

1 Introduction . 7

2 The Signalling Data Terminal Layer . 9

3 SDTI Services Definition . 13

4 SDTI Primitives . 23

5 Diagnostics Requirements . 93

A LMI Header File Listing . 95

B SDTI Header File Listing . 101

License . 105

Glossary . 113

Acronyms . 115

References . 117

Index . 119

iii

Table of Contents

Preface . 3
Security Warning . 3
Abstract . 3
Purpose . 3
Intent . 4
Audience . 4
Disclaimer . 4
Revision History . 4

1 Introduction . 7
1.1 Related Documentation . 7

1.1.1 Role . 7
1.2 Definitions, Acronyms, Abbreviations . 7

2 The Signalling Data Terminal Layer 9
2.1 Model of the SDTI . 9
2.2 SDTI Services . 10

2.2.1 Local Management . 10
2.2.2 Protocol . 10

2.3 Purpose of the SDTI . 11

3 SDTI Services Definition . 13
3.1 Local Management Services . 13

3.1.1 Acknowledgement Service . 13
3.1.2 Information Reporting Service . 14
3.1.3 Physical Point of Attachment Service . 14

3.1.3.1 PPA Attachment Service . 15
3.1.3.2 PPA Detachment Service . 15

3.1.4 Initialization Service . 16
3.1.4.1 Interface Enable Service . 16
3.1.4.2 Interface Disable Service . 16

3.1.5 Options Management Service . 17
3.1.6 Error Reporting Service . 18
3.1.7 Statistics Reporting Service . 18
3.1.8 Event Reporting Service . 19

3.2 Protocol Services . 19
3.2.1 Power On Service . 19
3.2.2 Data Transfer Service . 19
3.2.3 Initial Alignment Service . 20
3.2.4 Error Rate Monitoring Service . 20
3.2.5 Receive Congestion Service . 20

iv Signalling Data Terminal Interface (SDTI)

4 SDTI Primitives . 23
4.1 Local Management Service Primitives . 23

4.1.1 Acknowledgement Service Primitives . 23
4.1.1.1 LMI OK ACK . 23
4.1.1.2 LMI ERROR ACK . 25

4.1.2 Information Reporting Service Primitives 30
4.1.2.1 LMI INFO REQ . 30
4.1.2.2 LMI INFO ACK . 33

4.1.3 Physical Point of Attachment Service Primitives 35
4.1.3.1 LMI ATTACH REQ . 35
4.1.3.2 LMI DETACH REQ . 38

4.1.4 Initialization Service Primitives . 41
4.1.4.1 LMI ENABLE REQ . 41
4.1.4.2 LMI ENABLE CON . 45
4.1.4.3 LMI DISABLE REQ . 46
4.1.4.4 LMI DISABLE CON . 49

4.1.5 Options Management Service Primitives 50
4.1.5.1 LMI OPTMGMT REQ . 50
4.1.5.2 LMI OPTMGMT ACK . 54

4.1.6 Event Reporting Service Primitives . 56
4.1.6.1 LMI ERROR IND . 56
4.1.6.2 LMI STATS IND . 60
4.1.6.3 LMI EVENT IND . 61

4.2 Protocol Service Primitives . 62
4.2.1 Power On Service Primitives . 62

4.2.1.1 SDT DAEDT START REQ . 62
4.2.1.2 SDT DAEDR START REQ . 64

4.2.2 Data Transfer Service Primitives . 66
4.2.2.1 SDT DAEDT TRANSMISSION REQ 66
4.2.2.2 SDT RC SIGNAL UNIT IND . 69
4.2.2.3 SDT TXC TRANSMISSION REQUEST IND 71

4.2.3 Initial Alignment Service Primitives . 73
4.2.3.1 SDT AERM START REQ . 73
4.2.3.2 SDT AERM SET TI TO TIN REQ 75
4.2.3.3 SDT AERM SET TI TO TIE REQ 77
4.2.3.4 SDT IAC CORRECT SU IND . 79
4.2.3.5 SDT IAC ABORT PROVING IND 81
4.2.3.6 SDT AERM STOP REQ . 82

4.2.4 Error Rate Monitoring Service Primitives 84
4.2.4.1 SDT SUERM START REQ . 84
4.2.4.2 SDT LSC LINK FAILURE IND . 86
4.2.4.3 SDT SUERM STOP REQ . 87

4.2.5 Receive Congestion Service Primitives . 89
4.2.5.1 SDT RC CONGESTION ACCEPT IND 89
4.2.5.2 SDT RC CONGESTION DISCARD IND 91
4.2.5.3 SDT RC NO CONGESTION IND 92

v

5 Diagnostics Requirements . 93
5.1 Non-Fatal Error Handling Facility . 93
5.2 Fatal Error Handling Facility . 93

Appendix A LMI Header File Listing 95

Appendix B SDTI Header File Listing 101

License . 105
GNU Free Documentation License . 105

Preamble . 105
Terms and Conditions for Copying, Distribution and Modification

. 105
How to use this License for your documents . 111

Glossary . 113

Acronyms . 115

References . 117

Index . 119

Signalling Data Terminal Interface (SDTI) Table of Contents

List of Figures
Figure 2.1: Model of the SDTI . 9
Figure 3.1: Message Flow: Successful Acknowledgement Service . 13
Figure 3.2: Message Flow: Unsuccessful Acknowledgement Service 13
Figure 3.3: Message Flow: Successful Information Reporting Service 14
Figure 3.4: Message Flow: Successful Attachment Service . 15
Figure 3.5: Message Flow: Successful Detachment Service . 16
Figure 3.6: Message Flow: Successful Enable Service . 16
Figure 3.7: Message Flow: Successful Disable Service . 17
Figure 3.8: Message Flow: Successful Options Management Service 18
Figure 3.9: Message Flow: Successful Error Reporting Service . 18
Figure 3.10: Message Flow: Successful Statistics Reporting Service 18
Figure 3.11: Message Flow: Successful Event Reporting Service . 19

2008-10-31 1

List of Tables
Table 2.1: Local Management Services . 10
Table 2.2: Protocol Services . 11

2 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) Preface

Preface

Security Warning

Permission to use, copy and distribute this documentation without modification, for any
purpose and without fee or royalty is hereby granted, provided that both the above copy-
right notice and this permission notice appears in all copies and that the name of OpenSS7
Corporation not be used in advertising or publicity pertaining to distribution of this docu-
mentation or its contents without specific, written prior permission. OpenSS7 Corporation
makes no representation about the suitability of this documentation for any purpose. It is
provided “as is” without express or implied warranty.

OpenSS7 Corporation disclaims all warranties with regard to this documentation including
all implied warranties of merchantability, fitness for a particular purpose, non-infringement,
or title; that the contents of the document are suitable for any purpose, or that the im-
plementation of such contents will not infringe on any third party patents, copyrights,
trademarks or other rights. In no event shall OpenSS7 Corporation be liable for any di-
rect, indirect, special or consequential damages or any damages whatsoever resulting from
loss of use, data or profits, whether in an action of contract, negligence or other tortious
action, arising out of or in connection with any use of this document or the performance or
implementation of the contents thereof.

OpenSS7 Corporation is making this documentation available as a reference point for the
industry. While OpenSS7 Corporation believes that these interfaces are well defined in this
release of the document, minor changes may be made prior to products conforming to the
interfaces being made available.

Abstract

This document is a Specification containing technical details concerning the implementation
of the Signalling Data Terminal Interface (SDTI) for OpenSS7. It contains recommendations
on software architecture as well as platform and system applicability of the Signalling Data
Terminal Interface (SDTI).

This document specifies a Signalling Data Terminal Interface (SDTI) Specification in sup-
port of the OpenSS7 Signalling Data Terminal (SDT) protocol stacks. It provides abstrac-
tion of the signalling data terminal interface to these components as well as providing a
basis for signalling data terminal control for other data terminal control protocols.

Purpose

The purpose of this document is to provide technical documentation of the Signalling Data
Terminal Interface (SDTI). This document is intended to be included with the OpenSS7
STREAMS software package released by OpenSS7 Corporation. It is intended to assist soft-
ware developers, maintainers and users of the Signalling Data Terminal Interface (SDTI)
with understanding the software architecture and technical interfaces that are made avail-
able in the software package.

2008-10-31 3

http://www.openss7.com/
http://www.openss7.com/

Preface

Intent

It is the intent of this document that it act as the primary source of information concern-
ing the Signalling Data Terminal Interface (SDTI). This document is intended to provide
information for writers of OpenSS7 Signalling Data Terminal Interface (SDTI) applications
as well as writers of OpenSS7 Signalling Data Terminal Interface (SDTI) Users.

Audience

The audience for this document is software developers, maintainers and users and integrators
of the Signalling Data Terminal Interface (SDTI). The target audience is developers and
users of the OpenSS7 SS7 stack.

Disclaimer

Although the author has attempted to ensure that the information in this document is com-
plete and correct, neither the Author nor OpenSS7 Corporation will take any responsibility
in it.

Revision History

Take care that you are working with a current version of this documentation: you will not
be notified of updates. To ensure that you are working with a current version, check the
OpenSS7 Project website for a current version.
Only the texinfo or roff source is controlled. A printed (or postscript) version of this
document is an UNCONTROLLED VERSION.

sdti.texi,v

Revision 0.9.2.9 2008-09-20 11:04:30 brian

- added package patchlevel

Revision 0.9.2.8 2008-08-03 06:03:32 brian

- protected agains texinfo commands in log entries

Revision 0.9.2.7 2008-08-03 05:05:16 brian

- conditional @syncodeindex frags out automake, fails distcheck

Revision 0.9.2.6 2008-07-11 09:36:12 brian

- updated documentation

Revision 0.9.2.5 2008-04-29 07:10:39 brian

- updating headers for release

Revision 0.9.2.4 2007/08/14 12:17:02 brian

- GPLv3 header updates

Revision 0.9.2.3 2007/07/14 01:33:50 brian

- make license explicit, add documentation

Revision 0.9.2.2 2007/07/09 09:12:59 brian

- working up SDTI specification

Revision 0.9.2.1 2007/07/04 08:24:57 brian

4 Version 0.9a Rel. 8

http://www.openss7.org/

Signalling Data Terminal Interface (SDTI) Preface

- added new files

2008-10-31 5

Signalling Data Terminal Interface (SDTI) Introduction

1 Introduction

This document specifies a STREAMS-based kernel-level instantiation of the ITU-T Sig-
nalling Data Terminal Interface (SDTI) definition. The Signalling Data Terminal Interface
(SDTI) enables the user of a a signalling data terminal service to access and use any of a
variety of conforming signalling data terminal providers without specific knowledge of the
provider’s protocol. The service interface is designed to support any network signalling data
terminal protocol and user signalling data terminal protocol. This interface only specifies
access to signalling data terminal service providers, and does not address issues concern-
ing signalling data terminal management, protocol performance, and performance analysis
tools.

This specification assumes that the reader is familiar with ITU-T state machines and sig-
nalling data terminal interfaces (e.g. Q.703, Q.2210), and STREAMS.

1.1 Related Documentation

— ITU-T Recommendation Q.703 (White Book)

— ITU-T Recommendation Q.2210 (White Book)

— ANSI T1.111.3/2002

— System V Interface Definition, Issue 2 - Volume 3

1.1.1 Role

This document specifies an interface that supports the services provided by the Signalling
System No. 7 (SS7) for ITU-T, ANSI and ETSI applications as described in ITU-T Recom-
mendation Q.703, ITU-T Recommendation Q.2210, ANSI T1.111.3, ETSI ETS 300 008-1.
These specifications are targeted for use by developers and testers of protocol modules that
require signalling data terminal service.

1.2 Definitions, Acronyms, Abbreviations

LM Local Management.

LMS Local Management Service.

LMS User A user of Local Management Services.

LMS Provider
A provider of Local Management Services.

Originating SDT User
A SDT-User that initiates a Signalling Data Terminal.

Destination SDT User
A SDT-User with whom an originating SDT user wishes to establish a Signalling
Data Terminal.

ISO International Organization for Standardization

2008-10-31 7

Chapter 1: Introduction

SDT User Kernel level protocol or user level application that is accessing the services of
the Signalling Data Terminal sub-layer.

SDT Provider
Signalling Data Terminal sub-layer entity/entities that provide/s the services
of the Signalling Data Terminal interface.

SDTI Signalling Data Terminal Interface

TIDU Signalling Data Terminal Interface Data Unit

TSDU Signalling Data Terminal Service Data Unit

OSI Open Systems Interconnection

QOS Quality of Service

STREAMS
A communication services development facility first available with UNIX Sys-
tem V Release 3.

8 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) The Signalling Data Terminal Layer

2 The Signalling Data Terminal Layer

The Signalling Data Terminal Layer provides the means to manage the association of SDT-
Users into connections. It is responsible for the routing and management of data to and
from signalling data terminal connections between SDT-user entities.

2.1 Model of the SDTI

The SDTI defines the services provided by the signalling data terminal layer to the signalling
data terminal user at the boundary between the signalling data terminal provider and the
signalling data terminal user entity. The interface consists of a set of primitives defined as
STREAMS messages that provide access to the signalling data terminal layer services, and
are transferred between the SDTS user entity and the SDTS provider. These primitives
are of two types; ones that originate from the SDTS user, and other that originate from
the SDTS provider. The primitives that originate from the SDTS user make requests to
the SDTS provider, or respond to an indication of an event of the SDTS provider. The
primitives that originate from the SDTS provider are either confirmations of a request or
are indications to the CCS user that an event has occurred. Figure 2.1 shows the model of
the SDTI.� �

Signalling Link
User

Signalling Link
Provider

Signalling Data Link
Provider

Signalling Terminal
Provider

Request/Response
Primitives

Kernel

User

Indication/Confirmation
Primitives

SDLI

SDTI

SLI

Figure 2.1: Model of the SDTI
 	
The SDTI allows the SDTS provider to be configured with any signalling data terminal layer
user (such as a signalling link application) that also conforms to the SDTI. A signalling data
terminal layer user can also be a user program that conforms to the SDTI and accesses the

2008-10-31 9

Chapter 2: The Signalling Data Terminal Layer

SDTS provider via putmsg(2s) and getmsg(2s) system calls. The typical configuration,
however, is to place a signalling link module above the signalling data terminal layer.

2.2 SDTI Services

The features of the SDTI are defined in terms of the services provided by the SDTS provider,
and the individual primitives that may flow between the SDTS user and the SDTS provider.

The SDTI Services are broken into two groups: local management services and protocol
services. Local management services are responsible for the local management of streams,
assignment of streams to physical points of attachment, enabling and disabling of streams,
management of options associated with a stream, and general acknowledgement and event
reporting for the stream. Protocol services consist of connecting a stream to a medium,
exchanging data with the medium, and disconnecting the stream from the medium.

2.2.1 Local Management

Local management services are listed in Table 2.1.

Phase Service Primitives

Local
Management

Acknowledgement LMI_OK_ACK, LMI_ERROR_ACK

Information
Reporting

LMI_INFO_REQ, LMI_INFO_ACK

PPA Attachment LMI_ATTACH_REQ, LMI_DETACH_REQ,
LMI_OK_ACK

Initialization LMI_ENABLE_REQ, LMI_ENABLE_CON,
LMI_DISABLE_REQ, LMI_DISABLE_CON

Options
Management

LMI_OPTMGMT_REQ, LMI_OPTMGMT_ACK

Event Reporting LMI_ERROR_IND, LMI_STATS_IND,
LMI_EVENT_IND

Table 2.1: Local Management Services

The local management services interface is described in Section 3.1 [Local Management
Services], page 13, and the primitives are detailed in Section 4.1 [Local Management Service
Primitives], page 23. The local management services interface is defined by the ‘ss7/lmi.h’
header file (see Appendix A [LMI Header File Listing], page 95).

2.2.2 Protocol

Protocol services are listed in Table 2.2.

10 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) The Signalling Data Terminal Layer

Phase Service Primitives

Protocol Power On SDT_DAEDT_START_REQ,
SDT_DEADR_START_REQ

Data Transfer SDT_DAEDT_TRANSMISSION_REQ,
SDT_RC_SIGNAL_UNIT_IND,
SDT_TXC_TRANSMISSION_REQUEST_IND

Initial Alignment SDT_AERM_START_REQ,
SDT_AERM_SET_TI_TO_TIN_REQ,
SDT_AERM_SET_TI_TO_TIE_REQ,
SDT_IAC_CORRECT_SU_IND,
SDT_IAC_ABORT_PROVING_IND,
SDT_AERM_STOP_REQ

Error Rate
Monitoring

SDT_SUERM_START_REQ,
SDT_LSC_LINK_FAILURE_IND,
SDT_SUERM_STOP_REQ

Receive
Congestion

SDT_RC_CONGESTION_ACCEPT_IND,
SDT_RC_CONGESTION_DISCARD_IND,
SDT_RC_NO_CONGESTION_IND

Table 2.2: Protocol Services
The protocol services interface is described in Section 3.2 [Protocol Services], page 19,
and the primitives are detailed in Section 4.2 [Protocol Service Primitives], page 62. The
protocol services interface is defined by the ‘ss7/sdti.h’ header file (see Appendix B [SDTI
Header File Listing], page 101).

2.3 Purpose of the SDTI

The SDTI is typically implemented as a device driver controlling a MPCC (Multi-Protocol
Controller Chip) device that provides access to channels. The purpose behind exposing this
low level interface is that almost all communications channel devices can be placed into
a SS7 HDLC mode, where a data stream can be exchanged between the driver and the
medium. The SDTI provides and inteface that, once implemented as a driver for a new
device, can provide complete and verified SS7 signalling link capabilities by pushing generic
SL (Signalling Link) modules over an open device stream.
This allows SL modules to be verified independently for correct operation and then simply
used for all manner of new device drivers that can implement the SDTI interface.

2008-10-31 11

Signalling Data Terminal Interface (SDTI) SDTI Services Definition

3 SDTI Services Definition

3.1 Local Management Services

3.1.1 Acknowledgement Service

The acknowledgement service provides the LMS user with the ability to receive positive and
negative acknowledgements regarding the successful or unsuccessful completion of services.

• LMI_OK_ACK: The LMI_OK_ACK message is used by the LMS provider to indicate suc-
cessful receipt and completion of a service primitive request that requires positive ac-
knowledgement.

• LMI_ERROR_ACK: The LMI_ERROR_ACK message is used by the LMS provider to indi-
cate successful receipt and failure to complete a service primitive request that requires
negative acknowledgement.

A successful invocation of the acknowledgement service is illustrated in Figure 3.1.� �
LMI_*

request

LMI_OK
acknowledgement

where LMI_* is:

LMI_DETACH
SDL_CONNECT
SDL_DISCONNECT

LMI_ATTACH

Figure 3.1: Message Flow: Successful Acknowledgement Service
 	
As illustrated in Figure 3.1, the service primitives for which a positive acknowledgement
may be returned are the LMI_ATTACH_REQ and LMI_DETACH_REQ.

An unsuccessful invocation of the acknowledgement service is illustrated in Figure 3.2.� �
LMI_*

request

LMI_ERROR
acknowledgement

where LMI_* is:
LMI_INFO
LMI_ATTACH
LMI_DETACH
LMI_ENABLE
LMI_DISABLE
LMI_OPTMGMT
SDL_CONNECT
SDL_DISCONNECT

Figure 3.2: Message Flow: Unsuccessful Acknowledgement Service
 	
As illustrated in Figure 3.2, the service primitives for which a negative acknowledgement
may be returned are the LMI_INFO_REQ, LMI_ATTACH_REQ, LMI_DETACH_REQ, LMI_ENABLE_
REQ, LMI_DISABLE_REQ and LMI_OPTMGMT_REQ messages.

2008-10-31 13

Chapter 3: SDTI Services Definition

3.1.2 Information Reporting Service

The information reporting service provides the LMS user with the ability to elicit informa-
tion from the LMS provider.
• LMI_INFO_REQ: The LMI_INFO_REQ message is used by the LMS user to request infor-

mation about the LMS provider.
• LMI_INFO_ACK: The LMI_INFO_ACK message is issued by the LMS provider to provide

requested information about the LMS provider.

A successful invocation of the information reporting service is illustrated in Figure 3.3.� �
LMI_INFO

request

LMI_INFO
acknowledgement

Figure 3.3: Message Flow: Successful Information Reporting Service
 	
3.1.3 Physical Point of Attachment Service

The local management interface provides the LMS user with the ability to associate a stream
to a physical point of appearance (PPA) or to disassociate a stream from a PPA. The local
management interface provides for two styles of LMS provider:

Style 1 LMS Provider

A Style 1 LMS provider is a provider that associates a stream with a PPA at the time of
the first open(2) call for the device, and disassociates a stream from a PPA at the time of
the last close(2) call for the device.
Physical points of attachment (PPA) are assigned to major and minor device number com-
binations. When the major and minor device number combination is opened, the opened
stream is automatically associated with the PPA for the major and minor device number
combination. The last close of the device disassociates the PPA from the stream.
Freshly opened Style 1 LMS provider streams start life in the LMI_DISABLED state.
This approach is suitable for LMS providers implemented as real or pseudo-device drivers
and is applicable when the number of minor devices is small and static.

Style 2 LMS Provider

A Style 2 LMS provider is a provider that associates a stream with a PPA at the time
that the LMS user issues the LMI_ATTACH_REQ message. Freshly opened streams are not
associated with any PPA. The Style 2 LMS provider stream is disassociated from a PPA
when the stream is closed or when the LMS user issues the LMI_DETACH_REQ message.
Freshly opened Style 2 LMS provider streams start life in the LMI_UNATTACHED state.

14 Version 0.9a Rel. 8

http://www.openss7.org/man2html?open(2)
http://www.openss7.org/man2html?close(2)

Signalling Data Terminal Interface (SDTI) SDTI Services Definition

This approach is suitable for LMS providers implemented as clone real or pseudo-device
drivers and is applicable when the number of minor devices is large or dynamic.

3.1.3.1 PPA Attachment Service

The PPA attachment service provides the LMS user with the ability to attach a Style 2
LMS provider stream to a physical point of appearance (PPA).

• LMI_ATTACH_REQ: The LMI_ATTACH_REQ message is issued by the LMS user to request
that a Style 2 LMS provider stream be attached to a specified physical point of ap-
pearance (PPA).

• LMI_OK_ACK: Upon successful receipt and processing of the LMI_ATTACH_REQ message,
the LMS provider acknowledges the success of the service completion with a LMI_OK_
ACK message.

• LMI_ERROR_ACK: Upon successful receipt but failure to process the LMI_ATTACH_REQ
message, the LMS provider acknowledges the failure of the service completion with a
LMI_ERROR_ACK message.

A successful invocation of the attachment service is illustrated in Figure 3.4.� �
LMI_ATTACH

request

LMI_OK
acknowledgement

Figure 3.4: Message Flow: Successful Attachment Service
 	
3.1.3.2 PPA Detachment Service

The PPA detachment service provides the LMS user with the ability to detach a Style 2
LMS provider stream from a physical point of attachment (PPA).

• LMI_DETACH_REQ: The LMI_DETACH_REQ message is issued by the LMS user to request
that a Style 2 LMS provider stream be detached from the attached physical point of
appearance (PPA).

• LMI_OK_ACK: Upon successful receipt and processing of the LMI_DETACH_REQ message,
the LMS provider acknowledges the success of the service completion with a LMI_OK_
ACK message.

• LMI_ERROR_ACK: Upon successful receipt but failure to process the LMI_DETACH_REQ
message, the LMS provider acknowledges the failure of the service completion with a
LMI_ERROR_ACK message.

A successful invocation of the detachment service is illustrated in Figure 3.5.

2008-10-31 15

Chapter 3: SDTI Services Definition� �
LMI_DETACH

request

LMI_OK
acknowledgement

Figure 3.5: Message Flow: Successful Detachment Service
 	
3.1.4 Initialization Service

The initialization service provides the LMS user with the abilty to enable and disable the
stream for the associated PPA.

3.1.4.1 Interface Enable Service

The interface enable service provides the LMS user with the ability to enable an LMS
provider stream that is associated with a PPA. Enabling the interface permits the LMS
user to exchange protocol service interface messages with the LMS provider.

• LMI_ENABLE_REQ: The LMI_ENABLE_REQ message is issued by the LMS user to request
that the protocol service interface be enabled.

• LMI_ENABLE_CON: Upon successful enabling of the protocol service interface, the LMS
provider acknowledges successful completion of the service by issuing a LMI_ENABLE_
CON message to the LMS user.

• LMI_ERRORK_ACK: Upon unsuccessful enabling of the protocol service interface, the LMS
provider acknowledges the failure to complete the service by issuing an LMI_ERROR_ACK
message to the LMS user.

A successful invocation of the enable service is illustrated in Figure 3.6.� �

LMI_ENABLE
confirmation

LMI_ENABLE
request

Figure 3.6: Message Flow: Successful Enable Service
 	
3.1.4.2 Interface Disable Service

The interface disable service provides the LMS user with the ability to disable an LMS
provider stream that is associated with a PPA. Disabling the interface withdraws the LMS
user’s ability to exchange protocol service interface messages with the LMS provider.

16 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Services Definition

• LMI_DISABLE_REQ: The LMI_DISABLE_REQ message is issued by the LMS user to request
that the protocol service interface be disabled.

• LMI_DISABLE_CON: Upon successful disabling of the protocol service interface, the LMS
provider acknowledges successful completion of the service by issuing a LMI_DISABLE_
CON message to the LMS user.

• LMI_ERRORK_ACK: Upon unsuccessful disabling of the protocol service interface, the
LMS provider acknowledges the failure to complete the service by issuing an LMI_
ERROR_ACK message to the LMS user.

A successful invocation of the disable service is illustrated in Figure 3.7.� �

LMI_DISABLE
confirmation

LMI_DISABLE
request

Figure 3.7: Message Flow: Successful Disable Service
 	
3.1.5 Options Management Service

The options management service provides the LMS user with the ability to control and
affect various generic and provider-specific options associated with the LMS provider.

• LMI_OPTMGMT_REQ: The LMS user issues a LMI_OPTMGMT_REQ message when it wishes to
interrogate or affect the setting of various generic or provider-specific options associated
with the LMS provider for the stream upon which the message is issued.

• LMI_OPTMGMT_ACK: Upon successful receipt of the LMI_OPTMGMT_REQ message, and suc-
cessful options processing, the LMS provider acknowledges the successful completion
of the service with an LMI_OPTMGMT_ACK message.

• LMI_ERROR_ACK: Upon successful receipt of the LMI_OPTMGMT_REQ message, and unsuc-
cessful options processing, the LMS provider acknowledges the failure to complete the
service by issuing an LMI_ERROR_ACK message to the LMS user.

A successful invocation of the options management service is illustrated in Figure 3.8.

2008-10-31 17

Chapter 3: SDTI Services Definition� �
LMI_OPTMGMT

request

LMI_OPTMGMT
acknowledgement

Figure 3.8: Message Flow: Successful Options Management Service
 	
3.1.6 Error Reporting Service

The error reporting service provides the LMS provider with the ability to indicate asyn-
chronous errors to the LMS user.

• LMI_ERROR_IND: The LMS provider issues the LMI_ERROR_IND message to the LMS
user when it needs to indicate an asynchronous error (such as the unusability of the
communications medium).

A successful invocation of the error reporting service is illustrated in Figure 3.9.� �

LMI_ERROR
indication

Figure 3.9: Message Flow: Successful Error Reporting Service
 	
3.1.7 Statistics Reporting Service

• LMI_STATS_IND:

A successful invocation of the statistics reporting service is illustrated in Figure 3.10.� �

LMI_STATS
indication

Figure 3.10: Message Flow: Successful Statistics Reporting Service
 	
18 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Services Definition

3.1.8 Event Reporting Service

The event reporting service provides the LMS provider with the ability to indicate specific
asynchronous management events to the LMS user.
• LMI_EVENT_IND: The LMS provider issues the LMI_EVENT_IND message to the LMS

user when it wishes to indicate an asynchronous (management) event to the LMS user.

A successful invocation of the event reporting service is illustrated in Figure 3.11.� �

LMI_EVENT
indication

Figure 3.11: Message Flow: Successful Event Reporting Service
 	
3.2 Protocol Services

Protocol services are specific to the Signalling Data Terminal interface. These services
consist of connection services that permit the transmit and receive directions to be connected
to or disconnected from the medium, and data transfer services that permit the exchange
of data between SDTS users.
The service primitives that implement the protocol services are described in detail in
Section 4.2 [Protocol Service Primitives], page 62.

3.2.1 Power On Service

The power on service provides the SDTS user with the ability to power up the receive and
trasmitters associated with the medium. Transmitters and receivers can be powered up
independently. Data trasnfer cannot occur until the transmitters or receivers have been
powered up.
• SDT_DAEDT_START_REQ: This service primitive allows the SDTS user to request that

transmission of bits begin on the medium.
• SDT_DAEDR_START_REQ: This service primitive allows the SDTS user to request that

receiption of bits from the medium begin.

3.2.2 Data Transfer Service

The data transfer service provides the SDTS user with the ability to exchange signal units
with the SDTS provider. Signal units may be sent to the SDTS provider for transmission
and received signal units are delivered to the SDTS user by the SDTS provider. Timing
queues can also be indicated by the SDTS provider.
• SDT_DAEDT_TRANSMISSION_REQ: This service primitive allows the SDTS user to request

the transmission of a signal unit.

2008-10-31 19

Chapter 3: SDTI Services Definition

• SDT_RC_SIGNAL_UNIT_IND: This service primitive allows the SDTS provider to indicate
when a signal unit has been received.

• SDT_TXC_TRANSMISSION_REQUEST_IND: This service primitive allows the SDTS
provider to indicate when it is idle (that is, it is requesting transmission).

3.2.3 Initial Alignment Service

The initial alignment service provides for all of the mechanisms associated with the Align-
ment Error Rate Monitor (AERM). This includes the ability for the SDTS user to start
and stop the AERM, set the proving period to either normal proving or emergency proving,
to receive correct signal unit indications and indications of when the error rate exceeds the
configured threshold.
• SDT_AERM_START_REQ: This service primitive allows the SDTS user to request that the

ERM for alignment be started. This is normally performed when initial alignment
begins on the signalling link.

• SDT_AERM_SET_TI_TO_TIN_REQ: This service primitive allows the SDTS user to request
that the ERM for alignment use the error threshold values for normal alignment.

• SDT_AERM_SET_TI_TO_TIE_REQ: This service primitive allows the SDTS user to request
that the ERM for alignment use the error threshold values for emergency alignment.

• SDT_IAC_CORRECT_SU_IND: This service primitive allows the SDTS provider to indicate
when a signal unit has sucessfully been received during initial alignment.

• SDT_IAC_ABORT_PROVING_IND: This service primitive allows the SDTS provider to
indicate when the Alignment Error Rate Monitor (AERM) exceeds it threshold.

• SDT_AERM_STOP_REQ: This service primitive allows the SDTS user to request that the
ERM for alignment be stopped. This is normally performed when initial alignement
ends for the signalling link.

3.2.4 Error Rate Monitoring Service

The error rate monitoring service provides all of the mechanisms associated with the Signal
Unit Error Rate Monitor (SUERM) or Errored Interval Monitor (EIM). This includes the
ability for the SDTS user to start and stop the SUERM/EIM, and be notified when the
error rate exceeds the configured threshold.
• SDT_SUERM_START_REQ: This service primitive allows the SDTS user to request that

the ERM for normal operation be started. This is normally performed when intial
alignment ends for the signalling link.

• SDT_LSC_LINK_FAILURE_IND: This service primitive allows the SDTS provider to in-
dicate when the Signal Unit Error Rate Monitor (SUERM) exceeds its threshold.

• SDT_SUERM_STOP_REQ: This service primitive allows the SDTS user to request that
the ERM for normal operation be stopped. This is normally performed when initial
alignment begins for the signalling link.

3.2.5 Receive Congestion Service

The receive congestion service providers mechanisms to implement provider-specific receive
congestion indications to the SDTS user.

20 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Services Definition

• SDT_RC_CONGESTION_ACCEPT_IND: This service primitive allows the SDTS provider to
indicate when receive congestion has onset, but not to the point that it is dicarding
signal units.

• SDT_RC_CONGESTION_DISCARD_IND: This service primitive allows the SDTS provider
to indicate when receive congestion has onset, and signal units are being dicarded.

• SDT_RC_NO_CONGESTION_IND: This service primitive allows the SDTS provider to in-
dicate when receive congestion abates.

2008-10-31 21

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4 SDTI Primitives

4.1 Local Management Service Primitives

These service primitives implement the local management services (see Section 3.1 [Local
Management Services], page 13).

4.1.1 Acknowledgement Service Primitives

These service primitives implement the acknowledgement service (see Section 3.1.1 [Ac-
knowledgement Service], page 13).

4.1.1.1 LMI OK ACK

Description

This primitive is used to acknowledge receipt and successful service completion for primitives
requiring acknowledgement that have no confirmation primitive.

Format

This primitive consists of one M_PCPROTO message block, structured as follows:
typedef struct {

lmi_long lmi_primitive;
lmi_long lmi_correct_primitive;
lmi_ulong lmi_state;

} lmi_ok_ack_t;

Parameters

The service primitive contains the following parameters:

lmi_primitive
Indicates the service primitive type. Always LMI_OK_ACK.

lmi_correct_primitive
Indicates the service primitive that was received and serviced correctly. This
field can be one of the following values:

LMI_ATTACH_REQ
Attach request.

LMI_DETACH_REQ
Detach request.

lmi_state
Indicates the current state of the LMS provider at the time that the primitive
was issued. This field can be one of the following values:

LMI_UNATTACHED
No PPA attached, awaiting LMI_ATTACH_REQ.

2008-10-31 23

Chapter 4: SDTI Primitives

LMI_UNUSABLE
Device cannot be used, STREAM in hung state.

LMI_DISABLED
PPA attached, awaiting LMI_ENABLE_REQ.

LMI_ENABLED
Ready for use, awaiting primitive exchange.

State

This primitive is issued by the LMS provider in the LMI_ATTACH_PENDING or LMI_DETACH_
PENDING state.

New State

The new state is LMI_UNATTACHED or LMI_DISABLED, depending on thee primitive to which
the message is responding.

24 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.1.1.2 LMI ERROR ACK

Description

The error acknowledgement primitive is used to acknowledge receipt and unsuccessful service
completion for primitives requiring acknowledgement.

Format

The error acknowledgement primitive consists of one M_PCPROTO message block, structured
as follows:

typedef struct {
lmi_long lmi_primitive;
lmi_ulong lmi_errno;
lmi_ulong lmi_reason;
lmi_long lmi_error_primitive;
lmi_ulong lmi_state;

} lmi_error_ack_t;

Parameters

The error acknowledgement primitive contains the following parameters:

lmi_primitive
Indicates the primitive type. Always LMI_ERROR_ACK.

lmi_errno
Indicates the LM error number. This field can have one of the following values:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADADDRESS
Address was invalid.

LMI_BADADDRTYPE
Invalid address type.

LMI_BADDIAL
(Not used.)

LMI_BADDIALTYPE
(Not used.)

LMI_BADDISPOSAL
Invalid disposal parameter.

LMI_BADFRAME
Defective SDU received.

LMI_BADPPA
Invalid PPA identifier.

2008-10-31 25

Chapter 4: SDTI Primitives

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_WRITEFAIL
Unitdata request failed.

LMI_CRCERR
CRC or FCS error.

LMI_DLE_EOT
DLE EOT detected.

LMI_FORMAT
Format error detected.

LMI_HDLC_ABORT
Aborted frame detected.

LMI_OVERRUN
Input overrun.

LMI_TOOSHORT
Frame too short.

LMI_INCOMPLETE
Partial frame received.

LMI_BUSY Telephone was busy.

LMI_NOANSWER
Connection went unanswered.

26 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_CALLREJECT
Connection rejected.

LMI_HDLC_IDLE
HDLC line went idle.

LMI_HDLC_NOTIDLE
HDLC link no longer idle.

LMI_QUIESCENT
Line being reassigned.

LMI_RESUMED
Line has been reassigned.

LMI_DSRTIMEOUT
Did not see DSR in time.

LMI_LAN_COLLISIONS
LAN excessive collisions.

LMI_LAN_REFUSED
LAN message refused.

LMI_LAN_NOSTATION
LAN no such station.

LMI_LOSTCTS
Lost Clear to Send signal.

LMI_DEVERR
Start of device-specific error codes.

lmi_reason
Indicates the reason for failure. This field is protocol-specific. When the lmi_
errno field is LMI_SYSERR, the lmi_reason field is the UNIX error number as
described in errno(3).

lmi_error_primitive
Indicates the primitive that was in error. This field can have one of the following
values:

LMI_INFO_REQ
Information request.

LMI_ATTACH_REQ
Attach request.

LMI_DETACH_REQ
Detach request.

LMI_ENABLE_REQ
Enable request.

2008-10-31 27

http://www.openss7.org/man2html?errno(3)

Chapter 4: SDTI Primitives

LMI_DISABLE_REQ
Disable request.

LMI_OPTMGMT_REQ
Options management request.

LMI_INFO_ACK
Information acknowledgement.

LMI_OK_ACK
Successful receipt acknowledgement.

LMI_ERROR_ACK
Error acknowledgement.

LMI_ENABLE_CON
Enable confirmation.

LMI_DISABLE_CON
Disable confirmation.

LMI_OPTMGMT_ACK
Options Management acknowledgement.

LMI_ERROR_IND
Error indication.

LMI_STATS_IND
Statistics indication.

LMI_EVENT_IND
Event indication.

lmi_state
Indicates the state of the LMS provider at the time that the primitive was
issued. This field can have one of the following values:

LMI_UNATTACHED
No PPA attached, awaiting LMI_ATTACH_REQ.

LMI_ATTACH_PENDING
Waiting for attach.

LMI_UNUSABLE
Device cannot be used, STREAM in hung state.

LMI_DISABLED
PPA attached, awaiting LMI_ENABLE_REQ.

LMI_ENABLE_PENDING
Waiting to send LMI_ENABLE_CON.

LMI_ENABLED
Ready for use, awaiting primitive exchange.

28 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_DISABLE_PENDING
Waiting to send LMI_DISABLE_CON.

LMI_DETACH_PENDING
Waiting for detach.

State

This primitive can be issued in any state for which a local acknowledgement is not pend-
ing. The LMS provider state at the time that the primitive was issued is indicated in the
primitive.

New State

The new state remains unchanged.

2008-10-31 29

Chapter 4: SDTI Primitives

4.1.2 Information Reporting Service Primitives

These service primitives implement the information reporting service (see Section 3.1.2
[Information Reporting Service], page 14).

4.1.2.1 LMI INFO REQ

Description

This LMS user originated primitive is issued by the LMS user to request that the LMS
provider return information concerning the capabilities and state of the LMS provider.

Format

The primitive consists of one M_PROTO or M_PCPROTO message block, structured as follows:
typedef struct {

lmi_ulong lmi_primitive;
} lmi_info_req_t;

Parameters

This primitive contains the following parameters:

lmi_primitive
Specifies the primitive type. Always LMI_INFO_REQ.

State

This primitive may be issued in any state but only when a local acknowledgement is not
pending.

New State

The new state remains unchanged.

Response

This primitive requires the LMS provider to acknowledge receipt of the primitive as follows:
− Successful: The LMS provider is required to acknowledge receipt of the primitive and

provide the requested information using the LMI_INFO_ACK primitive.
− Unsuccessful (non-fatal errors): The LMS provider is required to negatively acknowl-

edge the primitive using the LMI_ERROR_ACK primitive, and include the reason for failure
in the primitive.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADADDRESS
Address was invalid.

30 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_BADADDRTYPE
Invalid address type.

LMI_BADDIAL
(Not used.)

LMI_BADDIALTYPE
(Not used.)

LMI_BADDISPOSAL
Invalid disposal parameter.

LMI_BADFRAME
Defective SDU received.

LMI_BADPPA
Invalid PPA identifier.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_WRITEFAIL
Unitdata request failed.

LMI_CRCERR
CRC or FCS error.

LMI_DLE_EOT
DLE EOT detected.

LMI_FORMAT
Format error detected.

2008-10-31 31

Chapter 4: SDTI Primitives

LMI_HDLC_ABORT
Aborted frame detected.

LMI_OVERRUN
Input overrun.

LMI_TOOSHORT
Frame too short.

LMI_INCOMPLETE
Partial frame received.

LMI_BUSY Telephone was busy.

LMI_NOANSWER
Connection went unanswered.

LMI_CALLREJECT
Connection rejected.

LMI_HDLC_IDLE
HDLC line went idle.

LMI_HDLC_NOTIDLE
HDLC link no longer idle.

LMI_QUIESCENT
Line being reassigned.

LMI_RESUMED
Line has been reassigned.

LMI_DSRTIMEOUT
Did not see DSR in time.

LMI_LAN_COLLISIONS
LAN excessive collisions.

LMI_LAN_REFUSED
LAN message refused.

LMI_LAN_NOSTATION
LAN no such station.

LMI_LOSTCTS
Lost Clear to Send signal.

LMI_DEVERR
Start of device-specific error codes.

32 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.1.2.2 LMI INFO ACK

Description

This LMS provider originated primitive acknowledges receipt and successful processing of
the LMI_INFO_REQ primitive and provides the request information concerning the LMS
provider.

Format

This message is formatted a one M_PROTO or M_PCPROTO message block, structured as follows:

typedef struct {
lmi_long lmi_primitive;
lmi_ulong lmi_version;
lmi_ulong lmi_state;
lmi_ulong lmi_max_sdu;
lmi_ulong lmi_min_sdu;
lmi_ulong lmi_header_len;
lmi_ulong lmi_ppa_style;
lmi_uchar lmi_ppa_addr[0];

} lmi_info_ack_t;

Parameters

The information acknowledgement service primitive has the following parameters:

lmi_primitive
Indicates the service primitive type. Always LMI_INFO_ACK.

lmi_version
Indicates the version of this specification that is being used by the LMS provider.

lmi_state
Indicates the state of the LMS provider at the time that the information ac-
knowledgement service primitive was issued. This field can be one of the fol-
lowing values:

LMI_UNATTACHED
No PPA attached, awaiting LMI_ATTACH_REQ.

LMI_ATTACH_PENDING
Waiting for attach.

LMI_UNUSABLE
Device cannot be used, STREAM in hung state.

LMI_DISABLED
PPA attached, awaiting LMI_ENABLE_REQ.

LMI_ENABLE_PENDING
Waiting to send LMI_ENABLE_CON.

2008-10-31 33

Chapter 4: SDTI Primitives

LMI_ENABLED
Ready for use, awaiting primitive exchange.

LMI_DISABLE_PENDING
Waiting to send LMI_DISABLE_CON.

LMI_DETACH_PENDING
Waiting for detach.

lmi_max_sdu
Indicates the maximum size of a Service Data Unit.

lmi_min_sdu
Indicates the minimum size of a Service Data Unit.

lmi_header_len
Indicates the amount of header space that should be reserved for placing LMS
provider headers.

lmi_ppa_style
Indicates the PPA style of the LMS provider. This value can be one of the
following values:

LMI_STYLE1
PPA is implicitly attached by open(2).

LMI_STYLE2
PPA must be explicitly attached using LMI_ATTACH_REQ.

lmi_ppa_addr
This is a variable length field. The length of the field is determined by the
length of the M_PROTO or M_PCPROTO message block.
For a Style 2 driver, when lmi_ppa_style is LMI_STYLE2, and when in an
attached state, this field providers the current PPA associated with the stream;
the length is typically 4 bytes.
For a Style 1 driver, when lmi_ppa_style is LMI_STYLE1, the length it 0 bytes.

State

This primitive can be issued in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

34 Version 0.9a Rel. 8

http://www.openss7.org/man2html?open(2)

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.1.3 Physical Point of Attachment Service Primitives

These service primitives implement the physical point of attachment service (see
Section 3.1.3 [Physical Point of Attachment Service], page 14).

4.1.3.1 LMI ATTACH REQ

Description

This LMS user originated primitive requests that the stream upon which the primitive is
issued by associated with the specified Physical Point of Attachment (PPA). This primitive
is only applicable to Style 2 LMS provider streams, that is, streams that return LMI_STYLE2
in the lmi_ppa_style field of the LMI_INFO_ACK.

Format

This primitive consists of one M_PROTO message block, structured as follows:
typedef struct {

lmi_long lmi_primitive;
lmi_uchar lmi_ppa[0];

} lmi_attach_req_t;

Parameters

The attach request primitive contains the following parameters:

lmi_primitive
Specifies the service primitive type. Always LMI_ATTACH_REQ.

lmi_ppa Specifies the Physical Point of Attachment (PPA) to which to associated the
Style 2 stream. This is a variable length identifier whose length is determined
by the length of the M_PROTO message block.

State

This primitive is only valid in state LMI_UNATTACHED and when a local acknowledgement is
not pending.

New State

Upon success, the new state is LMI_ATTACH_PENDING. Upon failure, the state remains
unchanged.

Response

The attach request service primitive requires that the LMS provider respond as follows:
− Successful: The LMS provider acknowledges receipt of the primitive and successful

outcome of the attach service with a LMI_OK_ACK primitive. The new state is LMI_
DISABLED.

− Unsuccessful (non-fatal errors): The LMS provider acknowledges receipt of the prim-
itive and failure of the attach service with a LMI_ERROR_ACK primitive containing the
reason for failure. The new state remains unchanged.

2008-10-31 35

Chapter 4: SDTI Primitives

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADADDRESS
Address was invalid.

LMI_BADADDRTYPE
Invalid address type.

LMI_BADDIAL
(Not used.)

LMI_BADDIALTYPE
(Not used.)

LMI_BADDISPOSAL
Invalid disposal parameter.

LMI_BADFRAME
Defective SDU received.

LMI_BADPPA
Invalid PPA identifier.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_WRITEFAIL
Unitdata request failed.

36 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_CRCERR
CRC or FCS error.

LMI_DLE_EOT
DLE EOT detected.

LMI_FORMAT
Format error detected.

LMI_HDLC_ABORT
Aborted frame detected.

LMI_OVERRUN
Input overrun.

LMI_TOOSHORT
Frame too short.

LMI_INCOMPLETE
Partial frame received.

LMI_BUSY Telephone was busy.

LMI_NOANSWER
Connection went unanswered.

LMI_CALLREJECT
Connection rejected.

LMI_HDLC_IDLE
HDLC line went idle.

LMI_HDLC_NOTIDLE
HDLC link no longer idle.

LMI_QUIESCENT
Line being reassigned.

LMI_RESUMED
Line has been reassigned.

LMI_DSRTIMEOUT
Did not see DSR in time.

LMI_LAN_COLLISIONS
LAN excessive collisions.

LMI_LAN_REFUSED
LAN message refused.

LMI_LAN_NOSTATION
LAN no such station.

LMI_LOSTCTS
Lost Clear to Send signal.

LMI_DEVERR
Start of device-specific error codes.

2008-10-31 37

Chapter 4: SDTI Primitives

4.1.3.2 LMI DETACH REQ

Description

This LMS user originated primitive request that the stream upon which the primitive is
issued be disassociated from the Physical Point of Appearance (PPA) to which it is currently
attached. This primitive is only applicable to Style 2 LMS provider streams, that is, streams
that return LMI_STYLE2 in the lmi_ppa_style field of the LMI_INFO_ACK.

Format

The detach request service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct {
lmi_long lmi_primitive;

} lmi_detach_req_t;

Parameters

The detach request service primitive contains the following parameters:

lmi_primitive
Specifies the service primitive type. Always LMI_DETACH_REQ.

State

This primitive is valid in the LMI_DISABLED state and when no local acknowledgement is
pending.

New State

Upon success, the new state is LMI_DETACH_PENDING. Upon failure, the state remains
unchanged.

Response

The detach request service primitive requires that the LMS provider respond as follows:
− Successful: The LMS provider acknowledges receipt of the primitive and successful

outcome of the detach service with a LMI_OK_ACK primitive. The new state is LMI_
UNATTACHED.

− Unsuccessful (non-fatal errors): The LMS provider acknowledges receipt of the prim-
itive and failure of the detach service with a LMI_ERROR_ACK primitive containing the
reason for failure. The new state remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADADDRESS
Address was invalid.

38 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_BADADDRTYPE
Invalid address type.

LMI_BADDIAL
(Not used.)

LMI_BADDIALTYPE
(Not used.)

LMI_BADDISPOSAL
Invalid disposal parameter.

LMI_BADFRAME
Defective SDU received.

LMI_BADPPA
Invalid PPA identifier.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_WRITEFAIL
Unitdata request failed.

LMI_CRCERR
CRC or FCS error.

LMI_DLE_EOT
DLE EOT detected.

LMI_FORMAT
Format error detected.

2008-10-31 39

Chapter 4: SDTI Primitives

LMI_HDLC_ABORT
Aborted frame detected.

LMI_OVERRUN
Input overrun.

LMI_TOOSHORT
Frame too short.

LMI_INCOMPLETE
Partial frame received.

LMI_BUSY Telephone was busy.

LMI_NOANSWER
Connection went unanswered.

LMI_CALLREJECT
Connection rejected.

LMI_HDLC_IDLE
HDLC line went idle.

LMI_HDLC_NOTIDLE
HDLC link no longer idle.

LMI_QUIESCENT
Line being reassigned.

LMI_RESUMED
Line has been reassigned.

LMI_DSRTIMEOUT
Did not see DSR in time.

LMI_LAN_COLLISIONS
LAN excessive collisions.

LMI_LAN_REFUSED
LAN message refused.

LMI_LAN_NOSTATION
LAN no such station.

LMI_LOSTCTS
Lost Clear to Send signal.

LMI_DEVERR
Start of device-specific error codes.

40 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.1.4 Initialization Service Primitives

Initialization service primitives allow the LMS user to enable or disable the protocol service
interface. Enabling the protocol service interface may require that some action be taken
to prepare the protocol service interface for use or to remove it from use. For example,
where the PPA corresponds to a signalling data link identifier as defined in Q.704, it may
be necessary to perform switching to connect or disconnect the circuit identification code
associated with the signalling data link identifier.

These service primitives implement the initialization service (see Section 3.1.4 [Initialization
Service], page 16).

4.1.4.1 LMI ENABLE REQ

Description

This LMS user originated primitive request that the LMS provider perform the actions
necessary to enable the protocol service interface and confirm that it is enabled. This
primitive is applicable to both styles of PPA.

Format

The enable request service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct {
lmi_long lmi_primitive;
lmi_uchar lmi_rem[0];

} lmi_enable_req_t;

Parameters

The enable request service primitive contains the following parameters:

lmi_primitive
Specifies the service primitive type. Always LMI_ENABLE_REQ.

lmi_rem Specifies a remote address to which to connect the PPA. The need for and form
of this address is provider-specific. The length of the field is determined by the
length of the M_PROTO message block. This remote address could be a circuit
identification code, an IP address, or some other form of circuit or channel
identifier.

State

This primitive is valid in the LMI_DISABLED state and when no local acknowledgement is
pending.

New State

Upon success the new state is LMI_ENABLE_PENDING. Upon failure, the state remains un-
changed.

2008-10-31 41

Chapter 4: SDTI Primitives

Response

The enable request service primitive requires that the LMS provider acknowledge receipt of
the primitive as follows:
− Successful: When successful, the LMS provider acknowledges successful completion of

the enable service with an LMI_ENABLE_CON primitive. The new state is LMI_ENABLED.
− Unsuccessful (non-fatal errors): When unsuccessful, the LMS provider acknowledges

the failure of the enable service wtih an LMI_ERROR_ACK primitive containing the error.
The new state remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADADDRESS
Address was invalid.

LMI_BADADDRTYPE
Invalid address type.

LMI_BADDIAL
(Not used.)

LMI_BADDIALTYPE
(Not used.)

LMI_BADDISPOSAL
Invalid disposal parameter.

LMI_BADFRAME
Defective SDU received.

LMI_BADPPA
Invalid PPA identifier.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

42 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_WRITEFAIL
Unitdata request failed.

LMI_CRCERR
CRC or FCS error.

LMI_DLE_EOT
DLE EOT detected.

LMI_FORMAT
Format error detected.

LMI_HDLC_ABORT
Aborted frame detected.

LMI_OVERRUN
Input overrun.

LMI_TOOSHORT
Frame too short.

LMI_INCOMPLETE
Partial frame received.

LMI_BUSY Telephone was busy.

LMI_NOANSWER
Connection went unanswered.

LMI_CALLREJECT
Connection rejected.

LMI_HDLC_IDLE
HDLC line went idle.

LMI_HDLC_NOTIDLE
HDLC link no longer idle.

LMI_QUIESCENT
Line being reassigned.

LMI_RESUMED
Line has been reassigned.

LMI_DSRTIMEOUT
Did not see DSR in time.

2008-10-31 43

Chapter 4: SDTI Primitives

LMI_LAN_COLLISIONS
LAN excessive collisions.

LMI_LAN_REFUSED
LAN message refused.

LMI_LAN_NOSTATION
LAN no such station.

LMI_LOSTCTS
Lost Clear to Send signal.

LMI_DEVERR
Start of device-specific error codes.

44 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.1.4.2 LMI ENABLE CON

Description

This LMS provider originated primitive is issued by the LMS provider to confirm the suc-
cessful completion of the enable service.

Format

The enable confirmation service primitive consists of one M_PROTO message block, structured
as follows:

typedef struct {
lmi_long lmi_primitive;
lmi_ulong lmi_state;

} lmi_enable_con_t;

Parameters

The enable confirmation service primitive contains the following parameters:

lmi_primitive
Indicates the service primitive type. Always LMI_ENABLE_CON.

lmi_state
Indicates the state following issuing the enable confirmation primitive. This
field can take on one of the following values:

LMI_ENABLED
Ready for use, awaiting primitive exchange.

State

This primitive is issued by the LMS provider in the LMI_ENABLE_PENDING state.

New State

The new state is LMI_ENABLED.

2008-10-31 45

Chapter 4: SDTI Primitives

4.1.4.3 LMI DISABLE REQ

Description

This LMS user originated primitive requests that the LMS provider perform the actions
necessary to disable the protocol service interface and confirm that it is disabled. The
primitive is applicable to both styles of PPA.

Format

The disable request service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct {
lmi_long lmi_primitive;

} lmi_disable_req_t;

Parameters

The disable request service primitive contains the following parameters:

lmi_primitive
Specifies the service primitive type. Always LMI_DISABLE_REQ.

State

The disable request service primitive is valid in the LMI_ENABLED state and when no local
acknowledgement is pending.

New State

Upon success, the new state is LMI_DISABLE_PENDING. Upon failure, the state remains
unchanged.

Response

The disable request service primitive requires the LMS provider to acknowledge receipt of
the primitive as follows:
− Successful: When successful, the LMS provider acknowledges successful completion

of the disable service with an LMI_DISABLE_CON primitive. The new state is LMI_
DISABLED.

− Unsuccessful (non-fatal errors): When unsuccessful, the LMS provider acknowledges
the failure of the disable service with an LMI_ERROR_ACK primitive containing the error.
The new state remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADADDRESS
Address was invalid.

46 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_BADADDRTYPE
Invalid address type.

LMI_BADDIAL
(Not used.)

LMI_BADDIALTYPE
(Not used.)

LMI_BADDISPOSAL
Invalid disposal parameter.

LMI_BADFRAME
Defective SDU received.

LMI_BADPPA
Invalid PPA identifier.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_WRITEFAIL
Unitdata request failed.

LMI_CRCERR
CRC or FCS error.

LMI_DLE_EOT
DLE EOT detected.

LMI_FORMAT
Format error detected.

2008-10-31 47

Chapter 4: SDTI Primitives

LMI_HDLC_ABORT
Aborted frame detected.

LMI_OVERRUN
Input overrun.

LMI_TOOSHORT
Frame too short.

LMI_INCOMPLETE
Partial frame received.

LMI_BUSY Telephone was busy.

LMI_NOANSWER
Connection went unanswered.

LMI_CALLREJECT
Connection rejected.

LMI_HDLC_IDLE
HDLC line went idle.

LMI_HDLC_NOTIDLE
HDLC link no longer idle.

LMI_QUIESCENT
Line being reassigned.

LMI_RESUMED
Line has been reassigned.

LMI_DSRTIMEOUT
Did not see DSR in time.

LMI_LAN_COLLISIONS
LAN excessive collisions.

LMI_LAN_REFUSED
LAN message refused.

LMI_LAN_NOSTATION
LAN no such station.

LMI_LOSTCTS
Lost Clear to Send signal.

LMI_DEVERR
Start of device-specific error codes.

48 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.1.4.4 LMI DISABLE CON

Description

This LMS provider originated primitive is issued by the LMS provider to confirm the suc-
cessful completion of the disable service.

Format

The disable confirmation service primitive consists of one M_PROTO message block, structured
as follows:

typedef struct {
lmi_long lmi_primitive;
lmi_ulong lmi_state;

} lmi_disable_con_t;

Parameters

The disable confirmation service primitive contains the following parameters:

lmi_primitive
Indicates the service primitive type. Always LMI_DISABLE_CON.

lmi_state
Indicates the state following issuing the disable confirmation primitive. This
field can take on one of the following values:

LMI_DISABLED
PPA attached, awaiting LMI_ENABLE_REQ.

State

This primitive is issued by the LMS provider in the LMI_DISABLE_PENDING state.

New State

The new state is LMI_DISABLED.

2008-10-31 49

Chapter 4: SDTI Primitives

4.1.5 Options Management Service Primitives

The options management service primitives allow the LMS user to negotiate options with
the LMS provider, retrieve the current and default values of options, and check that values
specified for options are correct.
The options management service primitive implement the options management service (see
Section 3.1.5 [Options Management Service], page 17).

4.1.5.1 LMI OPTMGMT REQ

Description

This LMS user originated primitive requests that LMS provider options be managed.

Format

The option management request service primitive consists of one M_PROTO or M_PCPROTO
message block, structured as follows:

typedef struct {
lmi_long lmi_primitive;
lmi_ulong lmi_opt_length;
lmi_ulong lmi_opt_offset;
lmi_ulong lmi_mgmt_flags;

} lmi_optmgmt_req_t;

Parameters

The option management request service primitive contains the following parameters:

lmi_primitive
Specifies the service primitive type. Always LMI_OPTMGMT_REQ.

lmi_opt_length
Specifies the length of the options.

lmi_opt_offset
Specifies the offset, from the beginning of the M_PROTO message block, of the
start of the options.

lmi_mgmt_flags
Specifies the management flags which determine what operation the LMS
provider is expected to perform on the specified options. This field can assume
one of the following values:

LMI_NEGOTIATE
Negotiate the specified value of each specified option and return
the negotiated value.

LMI_CHECK
Check the validity of the specified value of each specified option
and return the result. Do not alter the current value assumed by
the LMS provider.

50 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_DEFAULT
Return the default value for the specified options (or all options).
Do not alter the current value assumed by the LMS provider.

LMI_CURRENT
Return the current value for the specified options (or all options).
Do not alter the current value assumed by the LMS provider.

State

This primitive is valid in any state where a local acknowledgement is not pending.

New State

The new state remains unchanged.

Response

The option management request service primitive requires the LMS provider to acknowledge
receipt of the primitive as follows:
− Successful: Upon success, the LMS provider acknowledges receipt of the service

primitive and successful completion of the options management service with an
LMI_OPTMGMT_ACK primitive containing the options management result. The state
remains unchanged.

− Unsuccessful (non-fatal errors): Upon failure, the LMS provider acknowledges receipt
of the service primitive and failure to complete the options management service with
an LMI_ERROR_ACK primitive containing the error. The state remains unchanged.

Reasons for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADADDRESS
Address was invalid.

LMI_BADADDRTYPE
Invalid address type.

LMI_BADDIAL
(Not used.)

LMI_BADDIALTYPE
(Not used.)

LMI_BADDISPOSAL
Invalid disposal parameter.

LMI_BADFRAME
Defective SDU received.

2008-10-31 51

Chapter 4: SDTI Primitives

LMI_BADPPA
Invalid PPA identifier.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_WRITEFAIL
Unitdata request failed.

LMI_CRCERR
CRC or FCS error.

LMI_DLE_EOT
DLE EOT detected.

LMI_FORMAT
Format error detected.

LMI_HDLC_ABORT
Aborted frame detected.

LMI_OVERRUN
Input overrun.

LMI_TOOSHORT
Frame too short.

LMI_INCOMPLETE
Partial frame received.

LMI_BUSY Telephone was busy.

52 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_NOANSWER
Connection went unanswered.

LMI_CALLREJECT
Connection rejected.

LMI_HDLC_IDLE
HDLC line went idle.

LMI_HDLC_NOTIDLE
HDLC link no longer idle.

LMI_QUIESCENT
Line being reassigned.

LMI_RESUMED
Line has been reassigned.

LMI_DSRTIMEOUT
Did not see DSR in time.

LMI_LAN_COLLISIONS
LAN excessive collisions.

LMI_LAN_REFUSED
LAN message refused.

LMI_LAN_NOSTATION
LAN no such station.

LMI_LOSTCTS
Lost Clear to Send signal.

LMI_DEVERR
Start of device-specific error codes.

2008-10-31 53

Chapter 4: SDTI Primitives

4.1.5.2 LMI OPTMGMT ACK

Description

This LMS provider originated primitive is issued by the LMS provider upon successful
completion of the options management service. It indicates the outcome of the options
management operation requested by the LMS user in a LMI_OPTMGMT_REQ primitive.

Format

The option management acknowledgement service primitive consists of one M_PCPROTO mes-
sage block, structured as follows:

typedef struct {
lmi_long lmi_primitive;
lmi_ulong lmi_opt_length;
lmi_ulong lmi_opt_offset;
lmi_ulong lmi_mgmt_flags;

} lmi_optmgmt_ack_t;

Parameters

The option management acknowledgement service primitive contains the following param-
eters:

lmi_primitive
Indicates the service primitive type. Always LMI_OPTMGMT_ACK.

lmi_opt_length
Indicates the length of the returned options.

lmi_opt_offset
Indicates the offset of the returned options from the start of the M_PCPROTO
message block.

lmi_mgmt_flags
Indicates the returned management flags. These flags indicate the overall suc-
cess of the options management service. This field can assume one of the fol-
lowing values:

LMI_SUCCESS
The LMS provider succeeded in negotiating or returning all of the
options specified by the LMS user in the LMI_OPTMGMT_REQ primi-
tive.

LMI_FAILURE
The LMS provider failed to negotiate one or more of the options
specified by the LMS user.

LMI_PARTSUCCESS
The LMS provider negotiated a value of lower quality for one or
more of the options specified by the LMS user.

54 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_READONLY
The LMS provider failed to negotiate one ore more of the options
specified by the LMS user because the option is treated as read-only
by the LMS provider.

LMI_NOTSUPPORT
The LMS provider failed to recognize one or more of the options
specified by the LMS user.

State

This primitive is issued by the LMS provider in direct response to an LMI_OPTMGMT_REQ
primitive.

New State

The new state remains unchanged.

Rules

The LMS provider follows the following rules when processing option management service
requests:
— When the lmi_mgmt_flags field in the LMI_OPTMGMT_REQ primitive is set to LMI_

NEGOTIATE, the LMS provider will attempt to negotiate a value for each of the options
specified in the request.

— When the flags are LMI_DEFAULT, the LMS provider will return the default values of
the specified options, or the default values of all options known to the LMS provider if
no options were specified.

— When the flags are LMI_CURRENT, the LMS provider will return the current values of
the specified options, or all options.

— When the flags are LMI_CHECK, the LMS provider will attempt to negotiate a value for
each of the options specified in the request and return the resulg of the negotiation,
but will not affect the current value of the option.

2008-10-31 55

Chapter 4: SDTI Primitives

4.1.6 Event Reporting Service Primitives

The event reporting service primitives allow the LMS provider to indicate asynchronous
errors, events and statistics collection to the LMS user.

These service primitives implement the event reporting service (see Section 3.1.8 [Event
Reporting Service], page 19).

4.1.6.1 LMI ERROR IND

Description

This LMS provider originated service primitive is issued by the LMS provider when it
detects and asynchronous error event. The service primitive is applicable to all styles of
PPA.

Format

The error indication service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct {
lmi_long lmi_primitive;
lmi_ulong lmi_errno;
lmi_ulong lmi_reason;
lmi_ulong lmi_state;

} lmi_error_ind_t;

Parameters

The error indication service primitive contains the following parameters:

lmi_primitive
Indicates the service primitive type. Always LMI_ERROR_IND.

lmi_errno
Indicates the LMI error number describing the error. This field can have one
of the following values:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADADDRESS
Address was invalid.

LMI_BADADDRTYPE
Invalid address type.

LMI_BADDIAL
(Not used.)

LMI_BADDIALTYPE
(Not used.)

56 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_BADDISPOSAL
Invalid disposal parameter.

LMI_BADFRAME
Defective SDU received.

LMI_BADPPA
Invalid PPA identifier.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_WRITEFAIL
Unitdata request failed.

LMI_CRCERR
CRC or FCS error.

LMI_DLE_EOT
DLE EOT detected.

LMI_FORMAT
Format error detected.

LMI_HDLC_ABORT
Aborted frame detected.

LMI_OVERRUN
Input overrun.

LMI_TOOSHORT
Frame too short.

2008-10-31 57

Chapter 4: SDTI Primitives

LMI_INCOMPLETE
Partial frame received.

LMI_BUSY Telephone was busy.

LMI_NOANSWER
Connection went unanswered.

LMI_CALLREJECT
Connection rejected.

LMI_HDLC_IDLE
HDLC line went idle.

LMI_HDLC_NOTIDLE
HDLC link no longer idle.

LMI_QUIESCENT
Line being reassigned.

LMI_RESUMED
Line has been reassigned.

LMI_DSRTIMEOUT
Did not see DSR in time.

LMI_LAN_COLLISIONS
LAN excessive collisions.

LMI_LAN_REFUSED
LAN message refused.

LMI_LAN_NOSTATION
LAN no such station.

LMI_LOSTCTS
Lost Clear to Send signal.

LMI_DEVERR
Start of device-specific error codes.

lmi_reason
Indicates the reason for failure. This field is protocol-specific. When the lmi_
errno field is LMI_SYSERR, the lmi_reason field is the UNIX error number as
described in errno(3).

lmi_state
Indicates the state of the LMS provider at the time that the primitive was
issued. This field can have one of the following values:

LMI_UNATTACHED
No PPA attached, awaiting LMI_ATTACH_REQ.

LMI_ATTACH_PENDING
Waiting for attach.

58 Version 0.9a Rel. 8

http://www.openss7.org/man2html?errno(3)

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_UNUSABLE
Device cannot be used, STREAM in hung state.

LMI_DISABLED
PPA attached, awaiting LMI_ENABLE_REQ.

LMI_ENABLE_PENDING
Waiting to send LMI_ENABLE_CON.

LMI_ENABLED
Ready for use, awaiting primitive exchange.

LMI_DISABLE_PENDING
Waiting to send LMI_DISABLE_CON.

LMI_DETACH_PENDING
Waiting for detach.

State

This primitive can be issued in any state for which a local acknowledgement is not pend-
ing. The LMS provider state at the time that the primitive was issued is indicated in the
primitive.

New State

The new state remains unchanged.

2008-10-31 59

Chapter 4: SDTI Primitives

4.1.6.2 LMI STATS IND

Description

This LMS provider originated primitive is issued by the LMS provider to indicate a periodic
statistics collection event. The service primitive is applicable to all styles of PPA.

Format

The statistics indication service primitive consists of one M_PROTO message block, structured
as follows:

typedef struct {
lmi_long lmi_primitive;
lmi_ulong lmi_interval;
lmi_ulong lmi_timestamp;

} lmi_stats_ind_t;

Following this structure within the M_PROTO message block is the provider-specific statistics.

Parameters

The statistics indication service primitive contains the following parameters:

lmi_primitive
Indicates the service primitive type. Always LMI_STATS_IND.

lmi_interval
Indicates the statistics collection interval to which the statistics apply. This
interval is specified in milliseconds.

lmi_timestamp
Indicates the UNIX time (from epoch) at which statistics were collected. The
timestamp is given in milliseconds from epoch.

State

This service primitive may be issued by the LMS provider in any state in which a local
acknowledgement is not pending.

New State

The new state remains unchanged.

60 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.1.6.3 LMI EVENT IND

Description

This LMS provider originated primitive is issued by the LMS provider to indicate an asyn-
chronous event. The service primitive is applicable to all styles of PPA.

Format

The event indication service primitive consists of one M_PROTO message block, structured as
follows:

typedef struct {
lmi_long lmi_primitive;
lmi_ulong lmi_objectid;
lmi_ulong lmi_timestamp;
lmi_ulong lmi_severity;

} lmi_event_ind_t;

Following this structure within the M_PROTO message block is the provider-specific event
information.

Parameters

THe event indication service primitive contains the following parameters:

lmi_primitive
Indicates the service primitive type. Always LMI_EVENT_IND.

lmi_objectid
Indicates the provider-specific object identifier that identifies the managed ob-
ject to which the event is associated.

lmi_timestamp
Indicates the UNIX time from epoch (in milliseconds).

lmi_severity
Indicates the provider-specific severity of the event.

State

This service primitive can be issued by the LMS provider in any state where a local ac-
knowledgement is not pending. Normally the LMS provider must be in the LMI_ENABLED
state for event reporting to occur.

New State

The new state remains unchanged.

2008-10-31 61

Chapter 4: SDTI Primitives

4.2 Protocol Service Primitives

The protocol service primitives implement the services of the DAEDT, DAEDR, AERM,
SUERM/EIM and a provider specific receive congestion function, including power on, initial
alignment support, error rate monitoring, receive cnogestion detection, and data transfer.
These service primitives implement the protocol services (see Section 3.2 [Protocol Services],
page 19).

4.2.1 Power On Service Primitives

The power on service primitives provide the ability for the SDTS user to power on the
DAEDR and DAEDT functions within the SDTS provider.
These service primitives implement the power on service (see Section 3.2.1 [Power On Ser-
vice], page 19).

4.2.1.1 SDT DAEDT START REQ

Description

The DAEDT start request service primitive is originated by the SDTS user when it wishes
to start the transmitters as part of a power-on sequence. Once started, the transmitters
cannot be stopped under protocol control.

Format

The DAEDT start request service primitive consists of one M_PROTO message block, format-
ted as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_daedt_start_req_t;

Parameters

The DAEDT start request service primitive contains the following parameters:

sdt_primitive
Specifies the service primitive type. Always SDT_DAEDT_START_REQ.

State

This primitive is only valid in the LMI_ENABLED management state and is valid when the
DAEDT is in the IDLE state.

New State

The new DAEDT state is the IN-SERVICE state.

Response

This primitive does not require receipt acknowledgement.
− Successful: When successful, the primitive does not require receipt acknowledgement.

The link state is unchanged.

62 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

− Unsuccessful (non-fatal errors): When unsuccessful, the SDTS provider negatively
acknowledges the primitive using a LMI_ERROR_ACK primitive containing the error and
reason for failure. The state remains unchanged.

When the terminal is in the LMI_ENABLED management state and the DAEDT is already in
the IN-SERVICE state, this primitive should be ignored and the SDTS provider should not
generate a non-fatal error.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_DEVERR
Start of device-specific error codes.

2008-10-31 63

Chapter 4: SDTI Primitives

4.2.1.2 SDT DAEDR START REQ

Description

The DAEDR start request service primitive is originated by the SDTS user when it wishes
to start the receivers as part of a power-on sequence. Once started, the receivers cannot
be stopped under protocol control. This primitive is a request from the Reception Control
(RC) function in the SDTS user to the DAEDR function in the SDTS provider.

Format

The DAEDR start request service primitive consists of one M_PROTO message block, format-
ted as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_daedr_start_req_t;

Parameters

The DAEDR start request service primitive contains the following parameters:

sdt_primitive
Specifies the service primitive type. Always SDT_DAEDR_START_REQ.

State

This primitive is only valid in the LMI_ENABLED management state and is valid when the
DAEDR is in the IDLE state.

New State

The new DAEDR state is the IN-SERVICE state.

Response

This primitive does not require receipt acknowledgement.
− Successful: When successful, the primitive does not require receipt acknowledgement.

The link state is unchanged.
− Unsuccessful (non-fatal errors): When unsuccessful, the SDTS provider negatively

acknowledges the primitive using a LMI_ERROR_ACK primitive containing the error and
reason for failure. The state remains unchanged.

When the terminal is in the LMI_ENABLED management state and the DAEDR is already in
the IN-SERVICE state, this primitive should be ignored and the SDTS provider should not
generate a non-fatal error.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

64 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_DEVERR
Start of device-specific error codes.

2008-10-31 65

Chapter 4: SDTI Primitives

4.2.2 Data Transfer Service Primitives

The data transfer service primitives provide the means for transfering data between SDTS
users across a signalling data link. Data is sent and received in signal units. Signal units are
the data contained in frames that occur between flags on the line excluding the checksum
octets. These are packets of data that contain an integer number of octets (a multiple
of 8 bits). When performing data transfer, signal units that are correctly received on
the signalling data link are delivered to the SDTS user as they arrive. Signal units for
transmission are delivered to the SDTS provider on demand, however, during quiescent
periods it is sometimes advantageous from the point of view of synchronous driver design
to request trasnmission of additional signal units in a pull arrangement rather than a push
arrangement. Therefore there is a primitive to allow the SDTS provider to request additional
data for trasnsmission.
These service primitives implement the data transfer service (see Section 3.2.2 [Data Trans-
fer Service], page 19).

4.2.2.1 SDT DAEDT TRANSMISSION REQ

Description

The DAEDT transmission request service primitive is originated by the SDTS user to
request that the SDTS provider trasnmit a signal unit on the medium. A signal unit is a
self-contained packet of data containing an integer number of octets of information. This
primitive is a request from the Transmission Control (TXC) function in the SDTS user to
the DAEDT function in the SDTS provider.

Format

The DAEDT transmission request service primitive consists of zero or one M_PROTO message
block, followed by one or more M_DATA message blocks containing the signal unit to transmit.
The M_PROTO mesage block, when present, is structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_daedt_transmission_req_t;

Parameters

The DAEDT transmission request service primitive contains the following parameters:

sdt_primitive
Specifies the service primitive type. Always SDT_DAEDT_TRANSMISSION_REQ.

State

This primitive is only valid in the LMI_ENABLED management state with the DAEDT in the
IN-SERVICE state.

New State

The new state is unchanged.

66 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

Rules

The SDTS user must observe the following rules when issuing the DAEDT transmission
request service primitive:
— This primitive should only be issued by the SDTS provider after the transmitters have

been enabled with a SDT_DAEDT_START_REQ and the DAEDT is in the IN-SERVICE
state.

— After the transmitter have been enabled while in the LMI_ENABLED management state,
the DAEDT state is always appropriate for the SDTS user to issue this primitive.

— The M_PROTO message block is optional. The SDTS provider will be prepared to accept
M_DATA message blocks from the SDTS user, without any M_PROTO message block, as
service primitive of this type.

— Most narrowband SS7 SDTS providers peform what is known as SU repetition. When
SUs that correspond to FISUs (Fill-In Signal Units) or LSSUs (Link Status Signal
Units) which are sent continuously on the signalling link, the SDTS user need only
send the first such signal unit. The SDTS provider will continuously repeat a FISU
or LSSU, when appropriate,1 until the next signal unit is presented for transmission.
To perform this function, a narrowband SS7 SDTS provider must know the protocol
options associated with the signalling link (i.e. the size of the sequence numbers and
length indicator).
Activate or deactivation of SU Repeating is a provider-specific function.

Response

This primitive does not require receipt acknowledgement.
− Successful: When successful, the primitive does not require receipt acknowledgement.

The link state is unchanged.
− Unsuccessful (non-fatal errors): When unsuccessful, the SDTS provider negatively

acknowledges the primitive using a LMI_ERROR_ACK primitive containing the error and
reason for failure. The state remains unchanged.

When the terminal is in the LMI_ENABLED management state, but the DAEDT is still in the
IDLE state, the primitive should be ignored and the corresponding data discarded without
generating a non-fatal error.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

1 Note that the only LSSU that is not repeated continuously is the SIB.

2008-10-31 67

Chapter 4: SDTI Primitives

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_DEVERR
Start of device-specific error codes.

68 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.2.2.2 SDT RC SIGNAL UNIT IND

Description

The RC signal unit indication service primitive is issued by the SDTS provider when a
signal unit arrives on the signalling data link and passes error detection. The primitive
is named the ‘RC’ signal unit indication because this signal is normally sent to reception
control (RC) within the SS7 Level 2 state machine. This primitive is an indication from
the DAEDR function in the SDTS provider to the Reception Control (RC) function in the
SDTS user.

Format

The RC signal unit indication service primtive consists of one optional M_PROTO message
block followed by one or more M_DATA message blocks containing the receive signal unit.
The M_PROTO message block, when present, is structured as follows:

typedef struct {
sdt_long sdt_primitive;
sdt_ulong sdt_count;

} sdt_rc_signal_unit_ind_t;

Parameters

The RC signal unit indication service primtive contains the following parameters:

sdt_primitive
Indicates the service primitive type. Always SDT_RC_SIGNAL_UNIT_IND.

sdt_count
When signal unit compression is in effect, this field contains a count of the
number of compressed identical signal units (not counting the original). When
signal unit compression is not in effect, or the signal unit was not compressed
(it was not repeated on the line), this field is set to the value 0.

State

This primitive is only issued from the LMI_ENABLED management state.

New State

The state remains unchanged.

Rules

The SDTS provider observes the following rules when generating the RC signal unit indi-
cation primitive:

— The primitive is only issued when the signalling data terminal is in the LMI_ENABLED
management state.

— Received signal units are indicated only after the receivers have been enabled using the
SDT_DAEDR_START_REQ command and the DAEDR is in the IN-SERVICE state.

2008-10-31 69

Chapter 4: SDTI Primitives

— Once the SDTS user is receiving signal units, it will continue to do so until a fatal
error occurs, the stream is closed, or the signalling data terminal is disabled with the
LMI_DISABLE_REQ primitive.

— The M_PROTO message block is optional and is only really required for indicating the
count of compressed signal units. When signal unit compression is not in effect, or
when a signal unit is not compressed (i.e. has a sdt_count of zero), the M_PROTO
message block is unnecessary and SDTS providers are encouraged to not include it.
When the M_PROTO message block is not included, the signal unit is delivered simply as
a chain of one or more M_DATA message blocks to the SDTS user. The SDTS user must
be prepared to receive RC signal unit indications consisting of only M_DATA message
blocks.

— Most narrowband SS7 SDTS providers provider for signal unit compression. Under
this scheme, the first non-identical signal unit is indicated with a sdt_count of zero.
Should additional identical signal units be received, the will be counted until another
non-identical signal unit is received. At that point, an RC signal unit indication with
a sdt_count indicating the number of compressed signal units is indicated followed by
an indication of the new non-identical signal unit with a sdt_count of zero. And the
cycle repeats.
To support this feature, SDTS users must be prepared to accept a compressed frame
representing all of the contiguous identical signalling units in this fashion. For example,
the SDTS user cannot rely by its design on the third identical signal unit causing a
state transsition in a timely manner.

— Invocation and applicability of a signal unit compression feature is provider-specific.
So, for example, Q.703 drivers use FISU and LSSU compression techniques, whereas,
M2PA (RFC 4165) does not require them.

Response

This primitive does not require a response from the SDTS user.

70 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.2.2.3 SDT TXC TRANSMISSION REQUEST IND

Description

The TXC transmission request indication service primitive is originated by the SDTS
provider to indicate that if a signal unit is not available for transmission that the signalling
terminal will idle the signalling data link. Depending on the specific SDTS provider, idling
the signalling data link may consist of idling continuous flags, FISUs or LSSUs. This in-
dication provides timing ques to the SDTS user. This primitive is an indication from the
DAEDT function in the SDTS provider to the Transmission Control (TXC) function in the
SDTS user.

Format

The TXC transmission request indication service primitive consists of one M_PROTO message
block, structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_txc_transmission_request_ind_t;

Parameters

The TXC transmission request indication service primitive contains the following parame-
ters:

sdt_primitive
Indicates the service primitive type. Always SDT_TXC_TRANSMISSION_REQUEST_
IND.

State

This primitive is only issued from the LMI_ENABLED management state and when the
DAEDT is in the IN-SERVICE state.

New State

The new state is unchanged.

Rules

The SDTS provider observes the following rules when issuing the TXC transmission request
indication service primitive:

— This service primitive is only issued when the signalling terminal is in the LMI_ENABLED
management state.

— This service primitive is only issued when the DAEDT is in the IN-SERVICE state; that
is, a SDT_DAEDT_START_REQ primitive has been received by the SDTS provider for the
signalling terminal.

— This service primitive is only issued by the SDTS provider when its transmission queue
is empty.

2008-10-31 71

Chapter 4: SDTI Primitives

— This service primitive is only issued by the SDTS provider when the provider is config-
ured to generate these indications. Configuration of the SDTS provider is a provider-
specific matter.

Response

This primitive does not require a specific response from the SDTS user. Upon receiv-
ing this primitive, if the SDTS user does not wish the signalling data link to idle flags,
FISUs or LSSUs, it should generate another trasnmission request using the SDT_DAEDT_
TRANSMISSION_REQ primitive.

72 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.2.3 Initial Alignment Service Primitives

The initial alignment service primitives peform the functions of the Alignment Error Rate
Monitor (AERM). They provide the SDTS user with the ability to start and stop the AERM,
set normal or emergency proving periods, and receive correct signal unit indications and
indications that the error rate has exceeded the threshold.

Not all SDTS providers implement nor require an AERM function. For example, broadband
signalling links can be configured to not perform proving, in which case the AERM function
is not necessary. Regardless of whether the AERM function is necessary or not, each SDTS
provider should be prepared to handle requests and generate appropriate indications as
though an AERM function existed, and without generating non-fatal errors.

Note that some designs do no permit the AERM function and the SUERM or EIM function
to be active simultaneously.

These service primitives implement the initial alignment service (see Section 3.2.3 [Initial
Alignment Service], page 20).

4.2.3.1 SDT AERM START REQ

Description

The AERM start request service primitive is originated by the SDTS use to request that
the Alignment Error Rate Monitor be started. This primitive is a request from the Initial
Alignment Control (IAC) function in the SDTS user to the AERM function in the SDTS
provider.

Format

The AERM start request service primitive consists of one M_PROTO message block, structured
as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_aerm_start_req_t;

Parameters

The AERM start request service primitive containst the following parameters:

sdt_primitive
Specifies the service primitive type. Always SDT_AERM_START_REQ.

State

This primitive is only valid in the LMI_ENABLED management state and valid when the
DAEDR function is in the IN-SERVICE state and the AERM function is in the IDLE state.

New State

The new state of the AERM function is the IN-SERVICE state.

2008-10-31 73

Chapter 4: SDTI Primitives

Response

This primitive does not require receipt acknowledgement.
− Successful: When successful, the primitive does not require receipt acknowledgement.

The AERM function is moved to the IN-SERVICE state.
− Unsuccessful (non-fatal errors): When unsuccessful, the SDTS provider negatively

acknowledges the primitive using a LMI_ERROR_ACK primitive containing the error and
reason for failure. The state remains unchanged.

When the signalling terminal is in the LMI_ENABLED management state, the DAEDR is
in the IN-SERIVCE state and the AERM is already in the IN-SERVICE state, this service
primitive should be ignored without generating a non-fatal error. Some STDS providers
may generate a non-fatal error when the SUERM/EIM function is not in the IDLE state.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_DEVERR
Start of device-specific error codes.

74 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.2.3.2 SDT AERM SET TI TO TIN REQ

Description

The AERM set Ti to Tin request service primitive is originated by the SDTS user to request
that the normal proving period be used for the current or next initial alignment error rate
monitoring. This primitive is a request from the Initial Alignment Control (IAC) function
in the SDTS user to the AERM function in the SDTS provider.

Format

The AERM set Ti to Tin request service primitive consists of one M_PROTO message block,
structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_aerm_set_ti_to_tin_req_t;

Parameters

The AERM set Ti to Tin request service primitive contains the following parameters:

sdt_primitive
Specifies the service primitive type. Always SDT_AERM_SET_TI_TO_TIN_REQ.

State

This primitive is only valid in the LMI_ENABLED management state but may be issued in
any signalling terminal state.

New State

The new state remains unchanged and normal proving is asserted.

Response

This primitive does not require receipt acknowledgement.
− Successful: When successful, the primitive does not require receipt acknowledgement.

The link state is unchanged.
− Unsuccessful (non-fatal errors): When unsuccessful, the SDTS provider negatively

acknowledges the primitive using a LMI_ERROR_ACK primitive containing the error and
reason for failure. The state remains unchanged.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

2008-10-31 75

Chapter 4: SDTI Primitives

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_DEVERR
Start of device-specific error codes.

76 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.2.3.3 SDT AERM SET TI TO TIE REQ

Description

The AERM set Ti to Tie request service primitive is originated by the SDTS user to request
that the emergency proving period be used for the current or next initial alignment error
rate monitoring. This primitive is a request from the Initial Alignment Control (IAC)
function in the SDTS user to the AERM function in the SDTS provider.

Format

The AERM set Ti to Tie request service primitive consists of one M_PROTO message block,
structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_aerm_set_ti_to_tie_req_t;

Parameters

The AERM set Ti to Tie request service primitive contains the following parameters:

sdt_primitive
Specifies the service primitive type. Always SDT_AERM_SET_TI_TO_TIE_REQ.

State

This primitive is only valid in the LMI_ENABLED management state but may be issued in
any signalling terminal state.

New State

The new state is unchanged and emergency proving is asserted.

Response

This primitive does not require receipt acknowledgement.
− Successful: When successful, the primitive does not require receipt acknowledgement.

The link state is unchanged.
− Unsuccessful (non-fatal errors): When unsuccessful, the SDTS provider negatively

acknowledges the primitive using a LMI_ERROR_ACK primitive containing the error and
reason for failure. The state remains unchanged.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

2008-10-31 77

Chapter 4: SDTI Primitives

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_DEVERR
Start of device-specific error codes.

78 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.2.3.4 SDT IAC CORRECT SU IND

Description

The IAC correct SU indication service primitive is issued by the SDTS provider during the
intial alignment phase to indicate that a correct signal unit has been received. Some STDS
user state machines require this primitive; others can use the SDT_RC_SIGNAL_UNIT_IND
primitive in its stead. This primitive is an indication from the AERM function in the SDTS
provider to the Initial Alignment Control (IAC) function in the SDTS user.

Format

The IAC correct SU indication service primitive consists of one M_PROTO message block,
structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_iac_correct_su_ind_t;

Parameters

The IAC correct SU indication service primitive contains the following parameters:

sdt_primitive
Indicates the service primitive type. Always SDT_IAC_CORRECT_SU_IND.

State

This primitive is only issued from the LMI_ENABLED management state and when the
DAEDR function is in the IN-SERVICE state and the AERM function is in the IN-SERVICE
state. It is only issued for the first correct signal unit received in this total state.

New State

The new state remains unchanged.

Rules

The SDTS provider observes the following rules when issuing the IAC correct SU indication
service primitive:
— The primitive is only issued when the signalling terminal is in the LMI_ENABLED man-

agement state.
— The primitive is only issued when the DEADR function is in the IN-SERVICE state.
— The primitive is only issued when the AERM function is in the IN-SERVICE state.
— The primitive is only issued for the first correct signal unit that is received in the

appropriate states.
— Whether the primitive is issued in the appropriate state is SDTS provider-specific.

Some SDTS providers may need configuration options set before this primitive will
be issued. The SDTS user should be prepared to use a SDT_RC_SIGNAL_UNIT_IND
primitive in its stead.

2008-10-31 79

Chapter 4: SDTI Primitives

Response

This primitive does not require a specific response from the SDTS user.

80 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.2.3.5 SDT IAC ABORT PROVING IND

Description

The IAC abort proving indication service primitive is issued by the SDTS provider to
indicate that the error rate experience on the signalling data link has exceeded the operating
threshold. This primitive is an indication from the AERM function in the SDTS provider
to the Initial Alignment Control (IAC) function in the SDTS user.

Format

The IAC abort proving indication service primitive consists of one M_PROTO message block,
structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_iac_abort_proving_ind_t;

Parameters

The IAC abort proving indication service primitive contains the following parameters:

sdt_primitive
Indicates the service primitive type. Always SDT_IAC_ABORT_PROVING_IND.

State

This primitive is only issued from the LMI_ENABLED management state with the DAEDR
function in the IN-SERIVCE state and the AERM function in the IN-SERVICE state.

New State

The new AERM state is IDLE.

Rules

The SDTS provider observes the following rules when issuing the IAC abort proving indi-
cation service primitive:
— The primitive is only issued when the signalling terminal is in the LMI_ENABLED man-

agement state.
— The primitive is only issued when the DAEDR function is in the IN-SERVICE state.
— The primitive is only issued when the AERM function is in the IN-SERVICE state.

After issuing the primitive the AERM is placed into the IDLE state.
— The primitive is only issued from the appropriate state when the error rate is detected

as exceeding the operating threshold. The setting of the operating threshold is a SDTS
provider-specific configuration matter.

— Not all SDTS providers have a fully functional AERM. Some providers may never issue
this primitive.

Response

This primitive does not require a response from the SDTS user.

2008-10-31 81

Chapter 4: SDTI Primitives

4.2.3.6 SDT AERM STOP REQ

Description

The AERM stop request service primitive is originated by the SDTS user to request that
the AERM function be stopped (moved to the IDLE state). This primitive is a request from
the Initial Alignment Control (IAC) function in the SDTS user to the AERM function in
the SDTS provider.

Format

The AERM stop request service primitive consists of one M_PROTO message block, structured
as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_aerm_stop_req_t;

Parameters

The AERM stop request service primitive contains the following parameters:

sdt_primitive
Specifies the service primitive type. Always SDT_AERM_STOP_REQ.

State

This primitive is only valid in the LMI_ENABLED management state with the DAEDR func-
tion in the IN-SERVICE state and the AERM function in the IN-SERVICE state.

New State

The new state of the AERM function is the IDLE state.

Response

This primitive does not require receipt acknowledgement.
− Successful: When successful, the primitive does not require receipt acknowledgement.

The AERM state is moved to the IDLE state.
− Unsuccessful (non-fatal errors): When unsuccessful, the SDTS provider negatively

acknowledges the primitive using a LMI_ERROR_ACK primitive containing the error and
reason for failure. The state remains unchanged.

When the signalling terminal is in the LMI_ENABLED management state and the AERM
function is already in the IDLE state, this primitive should be ignored and no non-fatal
error generated.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

82 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event occurred.

LMI_FATALERR
Device has become unusable.

LMI_INITFAILED
Link initialization failed.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_DEVERR
Start of device-specific error codes.

2008-10-31 83

Chapter 4: SDTI Primitives

4.2.4 Error Rate Monitoring Service Primitives

The error rate monitoring service primitives perform the functions of the Signal Unit Error
Rate Monitor (SUERM) or Errored Interval Monitor (EIM). They provide the SDTS user
with the ability to start and stop the SUERM/EIM, and receive indications that the error
rate has exceeded the operating threshold.

Not all SDTS providers implement nor require a SUERM/EIM function. Regardless of
whether the SUERM/EIM function is necessary or not, each SDTS provider should be
prepared to handle requests and generate appropriate indications as though a SUERM or
EIM function existed, and without generating non-fatal errors.

Note that some designs do no permit the AERM function and the SUERM or EIM function
to be active simultaneously.

These service primitives implement the error rate monitoring service (see Section 3.2.4
[Error Rate Monitoring Service], page 20).

4.2.4.1 SDT SUERM START REQ

Description

This SDTS user originated primitive is used to start the Signal Unit Error Rate Monitor
(SUERM) or Errorred Interval Monitor (EIM) service. This primitive is a request from the
Link State Control (LSC) function in the SDTS user to the SUERM/EIM function in the
SDTS provider.

Format

The SUERM start service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_suerm_start_req_t;

Parameters

The SUERM start service primitive contains the following parameters:

sdt_primitive
Specifies the service primitive type. Always SDT_SUERM_START_REQ.

State

This primitive is only valid in the LMI_ENABLED management state, when the DAEDR is in
the IN-SERVICE state, when the AERM is in the IDLE state and when the SUERM/EIM is
in the IDLE state.

New State

The new management state remains unchanged. The state of the SUERM is moved to
IN-SERVICE state.

84 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

Response

This service primitive is not acknowledged, but can cause a non-fatal error as follows:
− Successful: When successful, the primitive is not acknowledged. The SUERM/EIM

function is moved to the IN-SERVICE state.
− Unsuccessful (non-fatal errors): When unsuccessful, the SDTS provider responds with

a LMI_ERROR_ACK primitive containing the error.

When the signalling terminal is in the LMI_ENABLED state and the SUERM/EIM function
is already in the IN-SERVICE state, this primitive should be ignored without generating a
non-fatal error.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event ocurred.

LMI_FATALERR
Device has become unusable.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_FORMAT
Format error detected.

LMI_DEVERR
Start of device-specific error codes.

2008-10-31 85

Chapter 4: SDTI Primitives

4.2.4.2 SDT LSC LINK FAILURE IND

Description

This SDTS provider originated primitive is issued by the SDTS provider while the
SUERM/EIM service is active to indicate that the error rate monitor has detected errors
that exceed the configured threshold and that the link should be failed for execessive
errors. This primitive is an indication from the SUERM/EIM function in the SDTS
provider to the Link State Control (LSC) function in the SDTS user.

Format

The link failure indication service primitive consists of one M_PROTO or M_PCPROTO message
block, structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_lsc_link_failure_ind_t;

Parameters

The link failure service primitive contains the following parameters:

sdt_primitive
Indicates the service primitive type. Always SDT_LSC_LINK_FAILURE_IND.

State

This primitive will only be issued when the signalling terminal is in the LMI_ENABLED man-
agement state and the SUERM/EIM is in the IN-SERVICE state.

New State

The new state for the SUERM is the IDLE state.

Rules

The following rules apply to the link failure indication service primitive:
— The SDTS provider will only issue an SDT_LSC_LINK_FAILURE_IND primitive while the

SUERM or EIM is in the IN-SERVICE state and the monitored error rate exceeds the
operating threshold configured for the error monitor. After issuing the primitive, the
SUERM is placed in the IDLE state.

— Not all STDS providers have a fully functional SUERM/EIM. Some providers may
never issue this primitive.

Response

This primitive does not require a response from the SDTS user.

86 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.2.4.3 SDT SUERM STOP REQ

Description

This SDTS user originated primitive is used to stop the Signal Unit Error Rate Monitor
(SUERM) or Errorred Interval Monitor (EIM) service. This primitive is a request from the
Link State Control (LSC) function in the SDTS user to the SUERM/EIM function in the
SDTS provider.

Format

The SUERM stop service primitive consists of one M_PROTO or M_PCPROTO message block,
structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_suerm_stop_req_t;

Parameters

The SUERM stop service primitive contains the following parameters:

sdt_primitive
Specifies the service primitive type. Always SDT_SUERM_STOP_REQ.

State

This primitive is only valid in the LMI_ENABLED management state, and when the
SUERM/EIM is in the IN-SERVICE state.

New State

The state of the SUERM/EIM is moved to IDLE state.

Response

This service primitive is not acknowledged, but can cause a non-fatal error as follows:

− Successful: When successful, the primitive is not acknowledged. The SUERM function
is moved to the IDLE state.

− Unsuccessful (non-fatal errors): When unsuccessful, the SDTS provider responds with
a LMI_ERROR_ACK primitive containing the error. The state remains unchanged.

When the signalling terminal is in the LMI_ENABLED management state and the
SUERM/EIM is already in the IDLE state, this primitive should be ignored without
generating a non-fatal error.

Reason for Failure

Non-Fatal Errors: applicable non-fatal errors are as follows:

LMI_UNSPEC
Unknown or unspecified.

2008-10-31 87

Chapter 4: SDTI Primitives

LMI_BADPRIM
Unrecognized primitive.

LMI_DISC Disconnected.

LMI_EVENT
Protocol-specific event ocurred.

LMI_FATALERR
Device has become unusable.

LMI_NOTSUPP
Primitive not supported by this device.

LMI_OUTSTATE
Primitive was issued from invalid state.

LMI_PROTOSHORT
M_PROTO block too short.

LMI_SYSERR
UNIX system error.

LMI_FORMAT
Format error detected.

LMI_DEVERR
Start of device-specific error codes.

88 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.2.5 Receive Congestion Service Primitives

The receive congestion service primitives provide the SDTS user with the ability to be
informed by the SDTS provider when it detects receive congestion conditions and can
determine a receive congestion policy. Receive congestion is a provider-specific matter.
The SDTS user is also capable of detecting receive congestion without the assistance of
these primitives. They are used to indicate receive congestion to the SDTS user that can
only be detected within the SDTS provider.
These service primitives implement the receive congestion service (see Section 3.2.5 [Receive
Congestion Service], page 20).

4.2.5.1 SDT RC CONGESTION ACCEPT IND

Description

The RC convestion accept indication service primitive is indicated by the SDTS provider
when it is experiencing receive congestion but signal units continue to be delivered by the
SDTS provider. This primitive is an indication from a provider-specific function in the
SDTS provider to the Reception Control (RC) function in the SDTS user.

Format

The RC congestion accept indication service primtive consists of one M_PROTO message block,
structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_rc_congestion_accept_ind_t;

Parameters

The RC congestion accept indication service primtive contains the following parameters:

sdt_primitive
Indicates the service primitive type. Always SDT_RC_CONGESTION_ACCEPT_IND.

State

This primitive is only issued when the signalling terminal is in the LMI_ENABLED management
state and the DAEDR function is in the IN-SERVICE state.

New State

The receive congestion state is moved to CONGESTION-ACCEPT.

Rules

The SDTS provider observes the following rules when issuing the RC congestion accept
service primitive:
— This primitive is only issued when the signalling terminal is in the LMI_ENABLED man-

agement state, the DAEDR function is in the IN-SERVICE state, and the SDTS provider
has detected receive congestion but is not discarding signal units.

2008-10-31 89

Chapter 4: SDTI Primitives

— Not all SDTS providers have a fully functional receive congestion function. Some SDTS
providers may never generate this primitive.

Response

This primitive does not require a response from the SDTS user.

90 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Primitives

4.2.5.2 SDT RC CONGESTION DISCARD IND

Description

The RC convestion discard indication service primitive is indicated by the SDTS provider
when it is experiencing receive congestion and signal units are being discarded by the SDTS
provider. This primitive is an indication from a provider-specific function in the SDTS
provider to the Reception Control (RC) function in the SDTS user.

Format

The RC congestion discard indication service primitive consists of one M_PROTO message
block, structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_rc_congestion_discard_ind_t;

Parameters

The RC congestion discard indication service primitive contains the following parameters:

sdt_primitive
Indicates the service primitive type. Always SDT_RC_CONGESTION_DISCARD_
IND.

State

This primitive is only issued from the LMI_ENABLED management state.

New State

The receive congestion state is moved to CONGESTION-DISCARD.

Rules

The SDTS provider observes the following rules when issuing the RC congestion discard
service primitive:
— This primitive is only issued when the signalling terminal is in the LMI_ENABLED man-

agement state, the DAEDR function is in the IN-SERVICE state, and the SDTS provider
has detected receive congestion and is discarding signal units.

— Not all SDTS providers have a fully functional receive congestion function. Some SDTS
providers may never generate this primitive.

Response

This primitive does not require a response from the SDTS user.

2008-10-31 91

Chapter 4: SDTI Primitives

4.2.5.3 SDT RC NO CONGESTION IND

Description

This SDTS provider originated primitive This primitive is an indication from a provider-
specific function in the SDTS provider to the Reception Control (RC) function in the SDTS
user.

Format

The RC no congestion indication service primitive consists of one M_PROTO message block,
structured as follows:

typedef struct {
sdt_long sdt_primitive;

} sdt_rc_no_congestion_ind_t;

Parameters

The RC no congestion indication service primitive contains the following parameters:

sdt_primitive
Indicates the service primitive type. Always SDT_RC_NO_CONGESTION_IND.

State

This primitive is only issued from the LMI_ENABLED management state.

New State

The receive congestion state is moved to NO-CONGESTION.

Rules

The SDTS provider observes the following rules when issuing the RC no congestion service
primitive:
— This primitive is only issued when the signalling terminal is in the LMI_ENABLED man-

agement state, the DAEDR function is in the IN-SERVICE state, and the SDTS provider
has detected that receive congestion has abated.

— Not all SDTS providers have a fully functional receive congestion function. Some SDTS
providers may never generate this primitive.

Response

This primitive does not require a response from the SDTS user.

92 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) Diagnostics Requirements

5 Diagnostics Requirements

Two error handling facilities should be provided to the SDTS user: one to handle non-fatal
errors, and the other to handle fatal errors.

5.1 Non-Fatal Error Handling Facility

These are errors that do not change the state of the SDTS interface as seen by the SDTS
user and provide the user with the option of reissuing the SDT primitive with the corrected
options specification. The non-fatal error handling is provided only to those primitives
that require acknowledgements, and uses the LMI_ERROR_ACK to report these errors. These
errors retain the state of the SDTS interface the same as it was before the SDT provider
received the primitive that was in error. Syntax errors and rule violations are reported via
the non-fatal error handling facility.

5.2 Fatal Error Handling Facility

These errors are issued by the SDT provider when it detects errors that are not correctable
by the SDT user, or if it is unable to report a correctible error to the SDTS user. Fatal
errors are indicated via the STREAMS message type M_ERROR with the UNIX system error
EPROTO. The M_ERROR STREAMS message type will result in the failure of all the UNIX
system calls on the stream. The SDTS user can recover from a fatal error by having all the
processes close the files associated with the stream, and then reopening them for processing.

2008-10-31 93

Signalling Data Terminal Interface (SDTI) LMI Header File Listing

Appendix A LMI Header File Listing

#define LMI_PROTO_BASE 16L

#define LMI_DSTR_FIRST (1L + LMI_PROTO_BASE)

#define LMI_INFO_REQ (1L + LMI_PROTO_BASE)

#define LMI_ATTACH_REQ (2L + LMI_PROTO_BASE)

#define LMI_DETACH_REQ (3L + LMI_PROTO_BASE)

#define LMI_ENABLE_REQ (4L + LMI_PROTO_BASE)

#define LMI_DISABLE_REQ (5L + LMI_PROTO_BASE)

#define LMI_OPTMGMT_REQ (6L + LMI_PROTO_BASE)

#define LMI_DSTR_LAST (6L + LMI_PROTO_BASE)

#define LMI_USTR_LAST (-1L - LMI_PROTO_BASE)

#define LMI_INFO_ACK (-1L - LMI_PROTO_BASE)

#define LMI_OK_ACK (-2L - LMI_PROTO_BASE)

#define LMI_ERROR_ACK (-3L - LMI_PROTO_BASE)

#define LMI_ENABLE_CON (-4L - LMI_PROTO_BASE)

#define LMI_DISABLE_CON (-5L - LMI_PROTO_BASE)

#define LMI_OPTMGMT_ACK (-6L - LMI_PROTO_BASE)

#define LMI_ERROR_IND (-7L - LMI_PROTO_BASE)

#define LMI_STATS_IND (-8L - LMI_PROTO_BASE)

#define LMI_EVENT_IND (-9L - LMI_PROTO_BASE)

#define LMI_USTR_FIRST (-9L - LMI_PROTO_BASE)

#define LMI_UNATTACHED 1L /* No PPA attached, awating LMI_ATTACH_REQ */

#define LMI_ATTACH_PENDING 2L /* Waiting for attach */

#define LMI_UNUSABLE 3L /* Device cannot be used, STREAM in hung state */

#define LMI_DISABLED 4L /* PPA attached, awaiting LMI_ENABLE_REQ */

#define LMI_ENABLE_PENDING 5L /* Waiting to send LMI_ENABLE_CON */

#define LMI_ENABLED 6L /* Ready for use, awaiting primtiive exchange */

#define LMI_DISABLE_PENDING 7L /* Waiting to send LMI_DISABLE_CON */

#define LMI_DETACH_PENDING 8L /* Waiting for detach */

/*

* LMI_ERROR_ACK and LMI_ERROR_IND reason codes

*/

#define LMI_UNSPEC 0x00000000 /* Unknown or unspecified */

#define LMI_BADADDRESS 0x00010000 /* Address was invalid */

#define LMI_BADADDRTYPE 0x00020000 /* Invalid address type */

#define LMI_BADDIAL 0x00030000 /* (not used) */

#define LMI_BADDIALTYPE 0x00040000 /* (not used) */

#define LMI_BADDISPOSAL 0x00050000 /* Invalid disposal parameter */

#define LMI_BADFRAME 0x00060000 /* Defective SDU received */

#define LMI_BADPPA 0x00070000 /* Invalid PPA identifier */

#define LMI_BADPRIM 0x00080000 /* Unregognized primitive */

#define LMI_DISC 0x00090000 /* Disconnected */

#define LMI_EVENT 0x000a0000 /* Protocol-specific event ocurred */

#define LMI_FATALERR 0x000b0000 /* Device has become unusable */

#define LMI_INITFAILED 0x000c0000 /* Link initialization failed */

#define LMI_NOTSUPP 0x000d0000 /* Primitive not supported by this device

*/

#define LMI_OUTSTATE 0x000e0000 /* Primitive was issued from invalid

state */

#define LMI_PROTOSHORT 0x000f0000 /* M_PROTO block too short */

#define LMI_SYSERR 0x00100000 /* UNIX system error */

2008-10-31 95

Appendix A: LMI Header File Listing

#define LMI_WRITEFAIL 0x00110000 /* Unitdata request failed */

#define LMI_CRCERR 0x00120000 /* CRC or FCS error */

#define LMI_DLE_EOT 0x00130000 /* DLE EOT detected */

#define LMI_FORMAT 0x00140000 /* Format error detected */

#define LMI_HDLC_ABORT 0x00150000 /* Aborted frame detected */

#define LMI_OVERRUN 0x00160000 /* Input overrun */

#define LMI_TOOSHORT 0x00170000 /* Frame too short */

#define LMI_INCOMPLETE 0x00180000 /* Partial frame received */

#define LMI_BUSY 0x00190000 /* Telephone was busy */

#define LMI_NOANSWER 0x001a0000 /* Connection went unanswered */

#define LMI_CALLREJECT 0x001b0000 /* Connection rejected */

#define LMI_HDLC_IDLE 0x001c0000 /* HDLC line went idle */

#define LMI_HDLC_NOTIDLE 0x001d0000 /* HDLC link no longer idle */

#define LMI_QUIESCENT 0x001e0000 /* Line being reassigned */

#define LMI_RESUMED 0x001f0000 /* Line has been reassigned */

#define LMI_DSRTIMEOUT 0x00200000 /* Did not see DSR in time */

#define LMI_LAN_COLLISIONS 0x00210000 /* LAN excessive collisions */

#define LMI_LAN_REFUSED 0x00220000 /* LAN message refused */

#define LMI_LAN_NOSTATION 0x00230000 /* LAN no such station */

#define LMI_LOSTCTS 0x00240000 /* Lost Clear to Send signal */

#define LMI_DEVERR 0x00250000 /* Start of device-specific error codes */

typedef signed int lmi_long;

typedef unsigned int lmi_ulong;

typedef unsigned short lmi_ushort;

typedef unsigned char lmi_uchar;

/*

* LOCAL MANAGEMENT PRIMITIVES

*/

/*

LMI_INFO_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_INFO_REQ */

} lmi_info_req_t;

/*

LMI_INFO_ACK, M_PROTO or M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_INFO_ACK */

lmi_ulong lmi_version;

lmi_ulong lmi_state;

lmi_ulong lmi_max_sdu;

lmi_ulong lmi_min_sdu;

lmi_ulong lmi_header_len;

lmi_ulong lmi_ppa_style;

lmi_ulong lmi_ppa_length;

lmi_ulong lmi_ppa_offset;

lmi_ulong lmi_prov_flags; /* provider specific flags */

lmi_ulong lmi_prov_state; /* provider specific state */

lmi_uchar lmi_ppa_addr[0];

96 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) LMI Header File Listing

} lmi_info_ack_t;

#define LMI_VERSION_1 1

#define LMI_VERSION_2 2

#define LMI_CURRENT_VERSION LMI_VERSION_2

/*

* LMI provider style.

*

* The LMI provider style which determines whether a provider requires an

* LMI_ATTACH_REQ to inform the provider which PPA user messages should be

* sent/received on.

*/

#define LMI_STYLE1 0x00 /* PPA is implicitly bound by open(2) */

#define LMI_STYLE2 0x01 /* PPA must be explicitly bound via STD_ATTACH_REQ */

/*

LMI_ATTACH_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_ATTACH_REQ */

lmi_ulong lmi_ppa_length;

lmi_ulong lmi_ppa_offset;

lmi_uchar lmi_ppa[0];

} lmi_attach_req_t;

/*

LMI_DETACH_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_DETACH_REQ */

} lmi_detach_req_t;

/*

LMI_ENABLE_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_ENABLE_REQ */

lmi_ulong lmi_rem_length;

lmi_ulong lmi_rem_offset;

lmi_uchar lmi_rem[0];

} lmi_enable_req_t;

/*

LMI_DISABLE_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_DISABLE_REQ */

} lmi_disable_req_t;

/*

LMI_OK_ACK, M_PROTO or M_PCPROTO

2008-10-31 97

Appendix A: LMI Header File Listing

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_OK_ACK */

lmi_long lmi_correct_primitive;

lmi_ulong lmi_state;

} lmi_ok_ack_t;

/*

LMI_ERROR_ACK, M_CTL

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_ERROR_ACK */

lmi_ulong lmi_errno;

lmi_ulong lmi_reason;

lmi_long lmi_error_primitive;

lmi_ulong lmi_state;

} lmi_error_ack_t;

/*

LMI_ENABLE_CON, M_PROTO or M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_ENABLE_CON */

lmi_ulong lmi_state;

} lmi_enable_con_t;

/*

LMI_DISABLE_CON, M_PROTO or M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_DISABLE_CON */

lmi_ulong lmi_state;

} lmi_disable_con_t;

/*

LMI_OPTMGMT_REQ, M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_OPTMGMT_REQ */

lmi_ulong lmi_opt_length;

lmi_ulong lmi_opt_offset;

lmi_ulong lmi_mgmt_flags;

} lmi_optmgmt_req_t;

/*

LMI_OPTMGMT_ACK, M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_OPMGMT_ACK */

lmi_ulong lmi_opt_length;

98 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) LMI Header File Listing

lmi_ulong lmi_opt_offset;

lmi_ulong lmi_mgmt_flags;

} lmi_optmgmt_ack_t;

#undef LMI_DEFAULT

#define LMI_NEGOTIATE 0x0004

#define LMI_CHECK 0x0008

#define LMI_DEFAULT 0x0010

#define LMI_SUCCESS 0x0020

#define LMI_FAILURE 0x0040

#define LMI_CURRENT 0x0080

#define LMI_PARTSUCCESS 0x0100

#define LMI_READONLY 0x0200

#define LMI_NOTSUPPORT 0x0400

/*

LMI_ERROR_IND, M_PROTO or M_PCPROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_ERROR_IND */

lmi_ulong lmi_errno;

lmi_ulong lmi_reason;

lmi_ulong lmi_state;

} lmi_error_ind_t;

/*

LMI_STATS_IND, M_PROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_STATS_IND */

lmi_ulong lmi_interval;

lmi_ulong lmi_timestamp;

} lmi_stats_ind_t;

/*

LMI_EVENT_IND, M_PROTO

*/

typedef struct {

lmi_long lmi_primitive; /* LMI_EVENT_IND */

lmi_ulong lmi_objectid;

lmi_ulong lmi_timestamp;

lmi_ulong lmi_severity;

} lmi_event_ind_t;

union LMI_primitive {

lmi_long lmi_primitive;

lmi_ok_ack_t ok_ack;

lmi_error_ack_t error_ack;

lmi_error_ind_t error_ind;

lmi_stats_ind_t stats_ind;

lmi_event_ind_t event_ind;

};

2008-10-31 99

Appendix A: LMI Header File Listing

union LMI_primitives {

lmi_long lmi_primitive;

lmi_info_req_t info_req;

lmi_info_ack_t info_ack;

lmi_attach_req_t attach_req;

lmi_detach_req_t detach_req;

lmi_enable_req_t enable_req;

lmi_disable_req_t disable_req;

lmi_ok_ack_t ok_ack;

lmi_error_ack_t error_ack;

lmi_enable_con_t enable_con;

lmi_disable_con_t disable_con;

lmi_error_ind_t error_ind;

lmi_stats_ind_t stats_ind;

lmi_event_ind_t event_ind;

};

#define LMI_INFO_REQ_SIZE sizeof(lmi_info_req_t)

#define LMI_INFO_ACK_SIZE sizeof(lmi_info_ack_t)

#define LMI_ATTACH_REQ_SIZE sizeof(lmi_attach_req_t)

#define LMI_DETACH_REQ_SIZE sizeof(lmi_detach_req_t)

#define LMI_ENABLE_REQ_SIZE sizeof(lmi_enable_req_t)

#define LMI_DISABLE_REQ_SIZE sizeof(lmi_disable_req_t)

#define LMI_OK_ACK_SIZE sizeof(lmi_ok_ack_t)

#define LMI_ERROR_ACK_SIZE sizeof(lmi_error_ack_t)

#define LMI_ENABLE_CON_SIZE sizeof(lmi_enable_con_t)

#define LMI_DISABLE_CON_SIZE sizeof(lmi_disable_con_t)

#define LMI_ERROR_IND_SIZE sizeof(lmi_error_ind_t)

#define LMI_STATS_IND_SIZE sizeof(lmi_stats_ind_t)

#define LMI_EVENT_IND_SIZE sizeof(lmi_event_ind_t)

typedef struct lmi_opthdr {

lmi_ulong level;

lmi_ulong name;

lmi_ulong length;

lmi_ulong status;

lmi_uchar value[0];

/*

followed by option value */

} lmi_opthdr_t;

#define LMI_LEVEL_COMMON ’\0’

#define LMI_LEVEL_SDL ’d’

#define LMI_LEVEL_SDT ’t’

#define LMI_LEVEL_SL ’l’

#define LMI_LEVEL_SLS ’s’

#define LMI_LEVEL_MTP ’M’

#define LMI_LEVEL_SCCP ’S’

#define LMI_LEVEL_ISUP ’I’

#define LMI_LEVEL_TCAP ’T’

#define LMI_OPT_PROTOCOL 1 /* use struct lmi_option */

#define LMI_OPT_STATISTICS 2 /* use struct lmi_sta */

100 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Header File Listing

Appendix B SDTI Header File Listing

/*

* The purpose of the SDT interface is to provide a separation between

* the SL (Signalling Link) interface which provides SS7 Level 2 (LINK)

* state machine services and the underlying driver which provides

* essentially HDLC capablities. In SS7 the entity providing HDLC

* services is called the Signalling Data Terminal (SDT). An SDTI

* implements the AERM/SUERM/EIM and DAEDR/DAEDT capabilities and

* communicates upstream to the Signalling Link using the primitives

* provided here.

*

* The SDT interface also recognizes Local Management Interface (LMI)

* primitives defined elsewhere <sys/ss7/lmi.h>.

*/

typedef lmi_long sdt_long;

typedef lmi_ulong sdt_ulong;

typedef lmi_ushort sdt_ushort;

typedef lmi_uchar sdt_uchar;

#define SDT_PROTO_BASE 48L

#define SDT_DSTR_FIRST (1L + SDT_PROTO_BASE)

#define SDT_DAEDT_TRANSMISSION_REQ (1L + SDT_PROTO_BASE)

#define SDT_DAEDT_START_REQ (2L + SDT_PROTO_BASE)

#define SDT_DAEDR_START_REQ (3L + SDT_PROTO_BASE)

#define SDT_AERM_START_REQ (4L + SDT_PROTO_BASE)

#define SDT_AERM_STOP_REQ (5L + SDT_PROTO_BASE)

#define SDT_AERM_SET_TI_TO_TIN_REQ (6L + SDT_PROTO_BASE)

#define SDT_AERM_SET_TI_TO_TIE_REQ (7L + SDT_PROTO_BASE)

#define SDT_SUERM_START_REQ (8L + SDT_PROTO_BASE)

#define SDT_SUERM_STOP_REQ (9L + SDT_PROTO_BASE)

#define SDT_DSTR_LAST (9L + SDT_PROTO_BASE)

#define SDT_USTR_LAST (-1L - SDT_PROTO_BASE)

#define SDT_RC_SIGNAL_UNIT_IND (-1L - SDT_PROTO_BASE)

#define SDT_RC_CONGESTION_ACCEPT_IND (-2L - SDT_PROTO_BASE)

#define SDT_RC_CONGESTION_DISCARD_IND (-3L - SDT_PROTO_BASE)

#define SDT_RC_NO_CONGESTION_IND (-4L - SDT_PROTO_BASE)

#define SDT_IAC_CORRECT_SU_IND (-5L - SDT_PROTO_BASE)

#define SDT_IAC_ABORT_PROVING_IND (-6L - SDT_PROTO_BASE)

#define SDT_LSC_LINK_FAILURE_IND (-7L - SDT_PROTO_BASE)

#define SDT_TXC_TRANSMISSION_REQUEST_IND (-8L - SDT_PROTO_BASE)

#define SDT_USTR_FIRST (-8L - SDT_PROTO_BASE)

/*

* STATE

*/

#define SDTS_POWER_OFF 0

#define SDTS_IDLE 1

#define SDTS_ABORTED_PROVING 2

#define SDTS_NORMAL_PROVING 3

#define SDTS_EMERGENCY_PROVING 4

#define SDTS_MONITORING_ERRORS 5

#define SDTS_MONITORING 6

2008-10-31 101

Appendix B: SDTI Header File Listing

/*

* FLAGS

*/

#define SDTF_DAEDT_ACTIVE (1<<0)

#define SDTF_DAEDR_ACTIVE (1<<1)

#define SDTF_AERM_ACTIVE (1<<2)

#define SDTF_SUERM_ACTIVE (1<<3)

/*

* SDT_RC_SIGNAL_UNIT_IND, M_DATA or M_PROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_RC_SIGNAL_UNIT_IND */

sdt_ulong sdt_count;

} sdt_rc_signal_unit_ind_t;

/*

* SDT_DAEDT_TRANSMISSION_REQ, M_DATA or M_PROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_DAEDT_TRANSMISSION_REQ */

} sdt_daedt_transmission_req_t;

/*

* SDT_DAEDT_START_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_DAEDT_START_REQ */

} sdt_daedt_start_req_t;

/*

* SDT_DAEDR_START_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_DAEDR_START_REQ */

} sdt_daedr_start_req_t;

/*

* SDT_IAC_CORRECT_SU_IND, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_IAC_CORRECT_SU_IND */

} sdt_iac_correct_su_ind_t;

/*

* SDT_AERM_START_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_AERM_START_REQ */

} sdt_aerm_start_req_t;

/*

* SDT_AERM_STOP_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

102 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) SDTI Header File Listing

sdt_long sdt_primitive; /* SDT_AERM_STOP_REQ */

} sdt_aerm_stop_req_t;

/*

* SDT_AERM_SET_TI_TO_TIN_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_AERM_SET_TI_TO_TIN_REQ */

} sdt_aerm_set_ti_to_tin_req_t;

/*

* SDT_AERM_SET_TI_TO_TIE_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_AERM_SET_TI_TO_TIE_REQ */

} sdt_aerm_set_ti_to_tie_req_t;

/*

* SDT_IAC_ABORT_PROVING_IND, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_IAC_ABORT_PROVING_IND */

} sdt_iac_abort_proving_ind_t;

/*

* SDT_SUERM_START_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_SUERM_START_REQ */

} sdt_suerm_start_req_t;

/*

* SDT_SUERM_STOP_REQ, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_SUERM_STOP_REQ */

} sdt_suerm_stop_req_t;

/*

* SDT_LSC_LINK_FAILURE_IND, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_LSC_LINK_FAILURE_IND */

} sdt_lsc_link_failure_ind_t;

/*

* SDT_RC_CONGESTION_ACCEPT_IND, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_RC_CONGESTION_ACCEPT_IND */

} sdt_rc_congestion_accept_ind_t;

/*

* SDT_RC_CONGESTION_DISCARD_IND, M_PROTO or M_PCPROTO

*/

typedef struct {

2008-10-31 103

Appendix B: SDTI Header File Listing

sdt_long sdt_primitive; /* SDT_RC_CONGESTION_DISCARD_IND */

} sdt_rc_congestion_discard_ind_t;

/*

* SDT_RC_NO_CONGESTION_IND, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_RC_NO_CONGESTION_IND */

} sdt_rc_no_congestion_ind_t;

/*

* SDT_TXC_TRANSMISSION_REQUEST_IND, M_PROTO or M_PCPROTO

*/

typedef struct {

sdt_long sdt_primitive; /* SDT_TXC_TRANSMISSION_REQUEST_IND */

} sdt_txc_transmission_request_ind_t;

union SDT_primitives {

sdt_long sdt_primitive;

sdt_daedt_transmission_req_t daedt_transmission_req;

sdt_daedt_start_req_t daedt_start_req;

sdt_daedr_start_req_t daedr_start_req;

sdt_aerm_start_req_t aerm_start_req;

sdt_aerm_stop_req_t aerm_stop_req;

sdt_aerm_set_ti_to_tin_req_t aerm_set_ti_to_tin_req;

sdt_aerm_set_ti_to_tie_req_t aerm_set_ti_to_tie_req;

sdt_suerm_start_req_t suerm_start_req;

sdt_suerm_stop_req_t suerm_stop_req;

sdt_rc_signal_unit_ind_t rc_signal_unit_ind;

sdt_rc_congestion_accept_ind_t rc_congestion_accept_ind;

sdt_rc_congestion_discard_ind_t rc_congestion_discard_ind;

sdt_rc_no_congestion_ind_t rc_no_congestion_ind;

sdt_iac_correct_su_ind_t iac_correct_su_ind;

sdt_iac_abort_proving_ind_t iac_abort_proving_ind;

sdt_lsc_link_failure_ind_t lsc_link_failure_ind;

sdt_txc_transmission_request_ind_t txc_transmission_request_ind;

};

#define SDT_DAEDT_TRANSMISSION_REQ_SIZE sizeof(sdt_daedt_transmission_req_t)

#define SDT_DAEDR_START_REQ_SIZE sizeof(sdt_daedr_start_req_t)

#define SDT_DAEDT_START_REQ_SIZE sizeof(sdt_daedt_start_req_t)

#define SDT_AERM_START_REQ_SIZE sizeof(sdt_aerm_start_req_t)

#define SDT_AERM_STOP_REQ_SIZE sizeof(sdt_aerm_stop_req_t)

#define SDT_AERM_SET_TI_TO_TIN_REQ_SIZE sizeof(sdt_aerm_set_ti_to_tin_req_t)

#define SDT_AERM_SET_TI_TO_TIE_REQ_SIZE sizeof(sdt_aerm_set_ti_to_tie_req_t)

#define SDT_SUERM_START_REQ_SIZE sizeof(sdt_suerm_start_req_t)

#define SDT_SUERM_STOP_REQ_SIZE sizeof(sdt_suerm_stop_req_t)

#define SDT_RC_SIGNAL_UNIT_IND_SIZE sizeof(sdt_rc_signal_unit_ind_t)

#define SDT_RC_CONGESTION_ACCEPT_IND_SIZE sizeof(sdt_rc_congestion_accept_ind_t)

#define SDT_RC_CONGESTION_DISCARD_IND_SIZE sizeof(sdt_rc_congestion_discard_ind_t)

#define SDT_RC_NO_CONGESTION_IND_SIZE sizeof(sdt_rc_no_congestion_ind_t)

#define SDT_IAC_CORRECT_SU_IND_SIZE sizeof(sdt_iac_correct_su_ind_t)

#define SDT_IAC_ABORT_PROVING_IND_SIZE sizeof(sdt_iac_abort_proving_ind_t)

#define SDT_LSC_LINK_FAILURE_IND_SIZE sizeof(sdt_lsc_link_failure_ind_t)

#define SDT_TXC_TRANSMISSION_REQUEST_IND_SIZE sizeof(sdt_txc_transmission_request_ind_t)

104 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) License

License

GNU Free Documentation License

GNU FREE DOCUMENTATION LICENSE
Version 1.1, March 2000

Copyright c© 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other written document free
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute
it, with or without modifying it, either commercially or noncommercially. Secondarily, this
License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

Terms and Conditions for Copying, Distribution and Modification

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by
the copyright holder saying it can be distributed under the terms of this License. The
“Document”, below, refers to any such manual or work. Any member of the public is
a licensee, and is addressed as “you”.
A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (For example, if the Document is in part a

2008-10-31 105

License texi/fdl.texi

textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, whose contents can
be viewed and edited directly and straightforwardly with generic text editors or (for
images composed of pixels) generic paint programs or (for drawings) some widely avail-
able drawing editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters. A copy made
in an otherwise Transparent file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not Transparent. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ascii without
markup, Texinfo input format, LaTEX input format, SGML or XML using a
publicly available DTD, and standard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF, proprietary formats that can
be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

106 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) License

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the
Document’s license notice requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and
legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the covers, as long
as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a publicly-accessible computer-network
location containing a complete Transparent copy of the Document, free of added ma-
terial, which the general network-using public has access to download anonymously at
no charge using public-standard network protocols. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
A. Use in the Title Page (and on the covers, if any) a title distinct from that of the

Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has less
than five).

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

2008-10-31 107

License texi/fdl.texi

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.
I. Preserve the section entitled “History”, and its title, and add to it an item stating

at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. In any section entitled “Acknowledgments” or “Dedications”, preserve the sec-
tion’s title, and preserve in the section all the substance and tone of each of the
contributor acknowledgments and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section as “Endorsements” or to conflict in title with
any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.
You may add a section entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be

108 Version 0.9a Rel. 8

Signalling Data Terminal Interface (SDTI) License

added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice.
The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.
In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History”; likewise combine any sec-
tions entitled “Acknowledgments”, and any sections entitled “Dedications”. You must
delete all sections entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.
You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, does not
as a whole count as a Modified Version of the Document, provided no compilation
copyright is claimed for the compilation. Such a compilation is called an “aggregate”,
and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

2008-10-31 109

License texi/fdl.texi

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one quarter of the entire aggregate, the Document’s
Cover Texts may be placed on covers that surround only the Document within the
aggregate. Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original
English version will prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.

END OF TERMS AND CONDITIONS

110 Version 0.9a Rel. 8

http://www.gnu.org/copyleft/

Signalling Data Terminal Interface (SDTI) License

How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being list their titles, with the

Front-Cover Texts being list, and with the Back-Cover Texts being list.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have no Invariant Sections, write “with no Invariant Sections” instead of saying which
ones are invariant. If you have no Front-Cover Texts, write “no Front-Cover Texts” instead
of “Front-Cover Texts being list”; likewise for Back-Cover Texts.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

2008-10-31 111

Signalling Data Terminal Interface (SDTI) Glossary

Glossary

Signalling Data Terminal Service Data Unit
A grouping of SDT user data whose boundaries are preserved from one end of
the signalling data terminal connection to the other.

Data transfer
The phase in connection and connectionless modes that supports the transfer
of data between to signalling data terminal users.

SDT provider
The signalling data terminal layer protocol that provides the services of the
signalling data terminal interface.

SDT user
The user-level application or user-level or kernel-level protocol that accesses the
services of the signalling data terminal layer.

Local management
The phase in connection and connectionless modes in which a SDT user ini-
tializes a stream and attaches a PPA address to the stream. Primitives in this
phase generate local operations only.

PPA
The point at which a system attaches itself to a physical communications
medium.

PPA identifier
An identifier of a particular physical medium over which communication tran-
spires.

2008-10-31 113

Signalling Data Terminal Interface (SDTI) Acronyms

Acronyms

AERM Alignment Error Rate Monitor
CC Congestion Control
DAEDR Delimitation Alignment and Error Detection (Receive)
DAEDT Delimitation Alignment and Error Detection (Transmit)
EIM Errored Interval Monitor
IAC Initial Alignment Control
ITU-T International Telecommunications Union - Telecom Sector
LMS Provider A provider of Local Management Services
LMS Local Management Service
LMS User A user of Local Management Services
LM Local Management
LSC Link State Control
PPA Physical Point of Attachment
RC Reception Control
SDLI Signalling Data Link Interface
SDL SDU Signalling Data Link Service Data Unit
SDLS Signalling Data Link Service
SDL Signalling Data Link
SDTI Signalling Data Terminal Interface
SDTS Signalling Data Terminal Service
SDT Signalling Data Terminal
SLI Signalling Link Interface
SLS Signalling Link Service
SL Signalling Link
SL Signalling Link
SS7 Signalling System No. 7
TXC Transmission Control

2008-10-31 115

Signalling Data Terminal Interface (SDTI) References

References

[1] ITU-T Recommendation Q.700, Introduction to CCITT Signalling System No. 7, March
1993, (Geneva), ITU, ITU-T Telecommunication Standardization Sector of ITU, (Previously
“CCITT Recommendation”).

[2] ITU-T Recommendation Q.701, Functional Description of the Message Transfer Part (MTP)
of Signalling System No. 7, March 1993, (Geneva), ITU, ITU-T Telecommunication Stan-
dardization Sector of ITU, (Previously “CCITT Recommendation”).

[3] ITU-T Recommendation Q.702, Signalling System No. 7—Signalling Data Link, March
1993, (Geneva), ITU, ITU-T Telecommunication Standardization Sector of ITU, (Previously
“CCITT Recommendation”).

[4] ITU-T Recommendation Q.703, Signalling System No. 7—Signalling Link, March 1993,
(Geneva), ITU, ITU-T Telecommunication Standardization Sector of ITU, (Previously
“CCITT Recommendation”).

[5] ITU-T Recommendation Q.704, Message Transfer Part—Signalling Network Functions and
Messages, March 1993, (Geneva), ITU, ITU-T Telecommunication Standardization Sector
of ITU, (Previously “CCITT Recommendation”).

[6] Geoffrey Gerrietts; Dave Grothe, Mikel Matthews, Dave Healy, CDI—Application Program
Interface Guide, March 1999, (Savoy, IL), GCOM, Inc.

[7] ITU-T Recommendation Q.771, Signalling System No. 7—Functional Description of Trans-
action Capabilities, March 1993, (Geneva), ITU, ITU-T Telecommunication Standardization
Sector of ITU, (Previously “CCITT Recommendation”).

2008-10-31 117

http://www.itu.int/rec/T-REC-Q.700/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.701/
http://www.itu.int/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.702/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.703/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.704/
http://www.itu.int/
http://www.itu.int/
http://www.itu.int/rec/T-REC-Q.771/
http://www.itu.int/
http://www.itu.int/

Signalling Data Terminal Interface (SDTI) Index

Index

C
close(2) . 14
CONGESTION-ACCEPT . 89
CONGESTION-DISCARD . 91

E
errno(3) . 27, 58

I
IDLE 62, 64, 67, 73, 74, 81, 82, 84, 86, 87
IN-SERIVCE . 74, 81
IN-SERVICE . . 62, 63, 64, 66, 67, 69, 71, 73, 74, 79,

81, 82, 84, 85, 86, 87, 89, 91, 92

L
license, FDL . 105
license, GNU Free Documentation License 105
LMI_ATTACH_PENDING 24, 28, 33, 35, 58
LMI_ATTACH_REQ 13, 14, 15, 23, 27, 28, 33, 34,

35, 58
lmi_attach_req_t . 35
LMI_BADADDRESS 25, 30, 36, 38, 42, 46, 51, 56
LMI_BADADDRTYPE 25, 31, 36, 39, 42, 47, 51, 56
LMI_BADDIAL 25, 31, 36, 39, 42, 47, 51, 56
LMI_BADDIALTYPE 25, 31, 36, 39, 42, 47, 51, 56
LMI_BADDISPOSAL 25, 31, 36, 39, 42, 47, 51, 57
LMI_BADFRAME 25, 31, 36, 39, 42, 47, 51, 57
LMI_BADPPA 25, 31, 36, 39, 42, 47, 52, 57
LMI_BADPRIM 26, 31, 36, 39, 42, 47, 52, 57, 63,

65, 67, 74, 75, 77, 83, 85, 88
LMI_BUSY 26, 32, 37, 40, 43, 48, 52, 58
LMI_CALLREJECT 27, 32, 37, 40, 43, 48, 53, 58
LMI_CHECK . 50, 55
lmi_correct_primitive . 23
LMI_CRCERR 26, 31, 37, 39, 43, 47, 52, 57
LMI_CURRENT . 51, 55
LMI_DEFAULT . 51, 55
LMI_DETACH_PENDING 24, 29, 34, 38, 59
LMI_DETACH_REQ 13, 14, 15, 23, 27, 38
lmi_detach_req_t . 38
LMI_DEVERR . . 27, 32, 37, 40, 44, 48, 53, 58, 63, 65,

68, 74, 76, 78, 83, 85, 88
LMI_DISABLE_CON 17, 28, 29, 34, 46, 49, 59
lmi_disable_con_t . 49
LMI_DISABLE_PENDING 29, 34, 46, 49, 59
LMI_DISABLE_REQ 13, 17, 28, 46, 70
lmi_disable_req_t . 46
LMI_DISABLED 14, 24, 28, 33, 35, 38, 41, 46, 49,

59

LMI_DISC 26, 31, 36, 39, 42, 47, 52, 57, 63, 65,
67, 74, 75, 77, 83, 85, 88

LMI_DLE_EOT 26, 31, 37, 39, 43, 47, 52, 57
LMI_DSRTIMEOUT 27, 32, 37, 40, 43, 48, 53, 58
LMI_ENABLE_CON 16, 28, 33, 42, 45, 59
lmi_enable_con_t . 45
LMI_ENABLE_PENDING 28, 33, 41, 45, 59
LMI_ENABLE_REQ . . 13, 16, 24, 27, 28, 33, 41, 49, 59
lmi_enable_req_t . 41
LMI_ENABLED 24, 28, 34, 42, 45, 46, 59, 61, 62,

63, 64, 66, 67, 69, 71, 73, 74, 75, 77, 79, 81, 82,
84, 85, 86, 87, 89, 91, 92

lmi_errno . 25, 27, 56, 58
LMI_ERROR_ACK . . 13, 15, 16, 17, 25, 28, 30, 35, 38,

42, 46, 51, 63, 64, 67, 74, 75, 77, 82, 85, 87, 93
lmi_error_ack_t . 25
LMI_ERROR_IND . 18, 28, 56
lmi_error_ind_t . 56
lmi_error_primitive . 27
LMI_ERRORK_ACK . 16, 17
LMI_EVENT . . . 26, 31, 36, 39, 42, 47, 52, 57, 63, 65,

68, 74, 76, 78, 83, 85, 88
LMI_EVENT_IND . 19, 28, 61
lmi_event_ind_t . 61
LMI_FAILURE . 54
LMI_FATALERR 26, 31, 36, 39, 42, 47, 52, 57, 63,

65, 68, 74, 76, 78, 83, 85, 88
LMI_FORMAT . . . 26, 31, 37, 39, 43, 47, 52, 57, 85, 88
LMI_HDLC_ABORT 26, 32, 37, 40, 43, 48, 52, 57
LMI_HDLC_IDLE 27, 32, 37, 40, 43, 48, 53, 58
LMI_HDLC_NOTIDLE . . . 27, 32, 37, 40, 43, 48, 53, 58
lmi_header_len . 34
LMI_INCOMPLETE 26, 32, 37, 40, 43, 48, 52, 58
LMI_INFO_ACK 14, 28, 30, 33, 35, 38
lmi_info_ack_t . 33
LMI_INFO_REQ 13, 14, 27, 30, 33
lmi_info_req_t . 30
LMI_INITFAILED 26, 31, 36, 39, 42, 47, 52, 57,

63, 65, 68, 74, 76, 78, 83
lmi_interval . 60
LMI_LAN_COLLISIONS 27, 32, 37, 40, 44, 48, 53,

58
LMI_LAN_NOSTATION . . 27, 32, 37, 40, 44, 48, 53, 58
LMI_LAN_REFUSED 27, 32, 37, 40, 44, 48, 53, 58
LMI_LOSTCTS 27, 32, 37, 40, 44, 48, 53, 58
lmi_max_sdu . 34
lmi_mgmt_flags . 50, 54, 55
lmi_min_sdu . 34
LMI_NEGOTIATE . 50, 55
LMI_NOANSWER 26, 32, 37, 40, 43, 48, 53, 58
LMI_NOTSUPP 26, 31, 36, 39, 42, 47, 52, 57, 63,

65, 68, 74, 76, 78, 83, 85, 88

2008-10-31 119

Index

LMI_NOTSUPPORT . 55
lmi_objectid . 61
LMI_OK_ACK 13, 15, 23, 28, 35, 38
lmi_ok_ack_t . 23
lmi_opt_length . 50, 54
lmi_opt_offset . 50, 54
LMI_OPTMGMT_ACK 17, 28, 51, 54
lmi_optmgmt_ack_t . 54
LMI_OPTMGMT_REQ 13, 17, 28, 50, 54, 55
lmi_optmgmt_req_t . 50
LMI_OUTSTATE 26, 31, 36, 39, 43, 47, 52, 57, 63,

65, 68, 74, 76, 78, 83, 85, 88
LMI_OVERRUN 26, 32, 37, 40, 43, 48, 52, 57
LMI_PARTSUCCESS . 54
lmi_ppa . 35
lmi_ppa_addr . 34
lmi_ppa_style . 34, 35, 38
lmi_primitive . . 23, 25, 30, 33, 35, 38, 41, 45, 46,

49, 50, 54, 56, 60, 61
LMI_PROTOSHORT 26, 31, 36, 39, 43, 47, 52, 57,

63, 65, 68, 74, 76, 78, 83, 85, 88
LMI_QUIESCENT 27, 32, 37, 40, 43, 48, 53, 58
LMI_READONLY . 55
lmi_reason . 27, 58
lmi_rem . 41
LMI_RESUMED 27, 32, 37, 40, 43, 48, 53, 58
lmi_severity . 61
lmi_state 23, 28, 33, 45, 49, 58
LMI_STATS_IND . 18, 28, 60
lmi_stats_ind_t . 60
LMI_STYLE1 . 34
LMI_STYLE2 . 34, 35, 38
LMI_SUCCESS . 54
LMI_SYSERR . . 26, 27, 31, 36, 39, 43, 47, 52, 57, 58,

63, 65, 68, 74, 76, 78, 83, 85, 88
lmi_timestamp . 60, 61
LMI_TOOSHORT 26, 32, 37, 40, 43, 48, 52, 57
LMI_UNATTACHED 14, 23, 24, 28, 33, 35, 38, 58
LMI_UNSPEC . . 25, 30, 36, 38, 42, 46, 51, 56, 63, 64,

67, 74, 75, 77, 82, 85, 87
LMI_UNUSABLE . 24, 28, 33, 59
lmi_version . 33
LMI_WRITEFAIL 26, 31, 36, 39, 43, 47, 52, 57

M
M_DATA . 66, 67, 69, 70
M_PCPROTO 23, 25, 30, 33, 34, 50, 54, 84, 86, 87
M_PROTO . . 26, 30, 31, 33, 34, 35, 36, 38, 39, 41, 43,

45, 46, 47, 49, 50, 52, 56, 57, 60, 61, 62, 63, 64,

65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78,
79, 81, 82, 83, 84, 85, 86, 87, 88, 89, 91, 92

N
NO-CONGESTION . 92

O
open(2) . 14, 34

S
SDT_AERM_SET_TI_TO_TIE_REQ 20, 77
sdt_aerm_set_ti_to_tie_req_t 77
SDT_AERM_SET_TI_TO_TIN_REQ 20, 75
sdt_aerm_set_ti_to_tin_req_t 75
SDT_AERM_START_REQ . 20, 73
sdt_aerm_start_req_t . 73
SDT_AERM_STOP_REQ . 20, 82
sdt_aerm_stop_req_t . 82
sdt_count . 69, 70
SDT_DAEDR_START_REQ 19, 64, 69
sdt_daedr_start_req_t . 64
SDT_DAEDT_START_REQ 19, 62, 67, 71
sdt_daedt_start_req_t . 62
SDT_DAEDT_TRANSMISSION_REQ 19, 66, 72
sdt_daedt_transmission_req_t 66
SDT_IAC_ABORT_PROVING_IND 20, 81
sdt_iac_abort_proving_ind_t 81
SDT_IAC_CORRECT_SU_IND 20, 79
sdt_iac_correct_su_ind_t 79
SDT_LSC_LINK_FAILURE_IND 20, 86
sdt_lsc_link_failure_ind_t 86
sdt_primitive . . 62, 64, 66, 69, 71, 73, 75, 77, 79,

81, 82, 84, 86, 87, 89, 91, 92
SDT_RC_CONGESTION_ACCEPT_IND 21, 89
sdt_rc_congestion_accept_ind_t 89
SDT_RC_CONGESTION_DISCARD_IND 21, 91
sdt_rc_congestion_discard_ind_t 91
SDT_RC_NO_CONGESTION_IND 21, 92
sdt_rc_no_congestion_ind_t 92
SDT_RC_SIGNAL_UNIT_IND 20, 69, 79
sdt_rc_signal_unit_ind_t 69
SDT_SUERM_START_REQ . 20, 84
sdt_suerm_start_req_t . 84
SDT_SUERM_STOP_REQ . 20, 87
sdt_suerm_stop_req_t . 87
SDT_TXC_TRANSMISSION_REQUEST_IND 20, 71
sdt_txc_transmission_request_ind_t 71
STREAMS . 3, 7, 9

120 Version 0.9a Rel. 8

	Preface
	Security Warning
	Abstract
	Purpose
	Intent
	Audience
	Disclaimer
	Revision History

	Introduction
	Related Documentation
	Role

	Definitions, Acronyms, Abbreviations

	The Signalling Data Terminal Layer
	Model of the SDTI
	SDTI Services
	Local Management
	Protocol

	Purpose of the SDTI

	SDTI Services Definition
	Local Management Services
	Acknowledgement Service
	Information Reporting Service
	Physical Point of Attachment Service
	PPA Attachment Service
	PPA Detachment Service

	Initialization Service
	Interface Enable Service
	Interface Disable Service

	Options Management Service
	Error Reporting Service
	Statistics Reporting Service
	Event Reporting Service

	Protocol Services
	Power On Service
	Data Transfer Service
	Initial Alignment Service
	Error Rate Monitoring Service
	Receive Congestion Service

	SDTI Primitives
	Local Management Service Primitives
	Acknowledgement Service Primitives
	LMI_OK_ACK
	LMI_ERROR_ACK

	Information Reporting Service Primitives
	LMI_INFO_REQ
	LMI_INFO_ACK

	Physical Point of Attachment Service Primitives
	LMI_ATTACH_REQ
	LMI_DETACH_REQ

	Initialization Service Primitives
	LMI_ENABLE_REQ
	LMI_ENABLE_CON
	LMI_DISABLE_REQ
	LMI_DISABLE_CON

	Options Management Service Primitives
	LMI_OPTMGMT_REQ
	LMI_OPTMGMT_ACK

	Event Reporting Service Primitives
	LMI_ERROR_IND
	LMI_STATS_IND
	LMI_EVENT_IND

	Protocol Service Primitives
	Power On Service Primitives
	SDT_DAEDT_START_REQ
	SDT_DAEDR_START_REQ

	Data Transfer Service Primitives
	SDT_DAEDT_TRANSMISSION_REQ
	SDT_RC_SIGNAL_UNIT_IND
	SDT_TXC_TRANSMISSION_REQUEST_IND

	Initial Alignment Service Primitives
	SDT_AERM_START_REQ
	SDT_AERM_SET_TI_TO_TIN_REQ
	SDT_AERM_SET_TI_TO_TIE_REQ
	SDT_IAC_CORRECT_SU_IND
	SDT_IAC_ABORT_PROVING_IND
	SDT_AERM_STOP_REQ

	Error Rate Monitoring Service Primitives
	SDT_SUERM_START_REQ
	SDT_LSC_LINK_FAILURE_IND
	SDT_SUERM_STOP_REQ

	Receive Congestion Service Primitives
	SDT_RC_CONGESTION_ACCEPT_IND
	SDT_RC_CONGESTION_DISCARD_IND
	SDT_RC_NO_CONGESTION_IND

	Diagnostics Requirements
	Non-Fatal Error Handling Facility
	Fatal Error Handling Facility

	LMI Header File Listing
	SDTI Header File Listing
	License
	GNU Free Documentation License
	Preamble
	Terms and Conditions for Copying, Distribution and Modification
	How to use this License for your documents

	Glossary
	Acronyms
	References
	Index

